Research Highlights
-
Cyanopyridines As Extremely Low-Reduction-Potential Anolytes for Nonaqueous Redox Flow Batteries
Discovery of a cyanophenylpyridine derivative with a very low reduction potential and good stability during cycling. Read More
-
Characterizing Redoxmer – Electrode Kinetics Using a SECM-Based Spot Analysis Method
Identified asymmetries in electron transfer (ET) kinetics between the reduction and oxidation of ferrocene-based redoxmers by measuring the ET rate constants (kf/kb) as a function of electrode potential. Read More
-
Benzotriazoles as Low Potential Anolytes for Non-Aqueous Redox Flow Batteries
We developed an easy-to-synthesize benzotriazole-based anolyte with a high energy redox potential (-2.3 V vs Fc/Fc+) and high solubility that demonstrates stable electrochemical cycling performance. Read More
-
Automated Measurement of Electrogenerated Redox Species Degradation Using Multiplexed Interdigitated Electrode Arrays
Microfabricated devices enabled an automated methodology to quickly screen redoxmer degradation kinetics at concentrations up to 0.5 M. Read More
-
A Heterogeneous Oxide Enables Reversible Calcium Electrodeposition for a Calcium Battery
The solid electrolyte interphase (SEI) formed on the calcium anode during reversible calcium electrodeposition has been compositionally mapped revealing the role of a heterogenous, nanometric calcium oxide as the responsible cation conductor and protective interphase. Read More
-
Understanding fluorine-free electrolytes via small-angle X-ray scattering
We compare the solvation phenomenon of sodium tetraphenylborate (NaBPh4) salt dissolved in organic solvents of propylene carbonate (PC), 1,2-dimethoxyethane (DME), acetonitrile (ACN) and tetrahydrofuran (THF) by SAXS/WAXS measurement and MD simulation. Read More
-
Navigating the Minefield of Battery Literature
This is an invited perspective aiming to help researchers new to the field of battery research to circumvent certain recurring misconceptions and inaccuracies in the current battery literature. It covers the electrolyte ideality and practical situation in batteries, the difficulty in accurately determining ion transference … Read More
-
Quantifying Lithium Ion Exchange in Solid Electrolyte Interphase (SEI) on Graphite Anode Surfaces
By using Li isotopic labelling of SEIs and electrolytes followed by time-of-flight secondary-ion mass spectroscopy and solid-state NMR analyses, we found that the majority of Li+ “immobilized” in the chemical ingredients were exchanged after 1 SEI formation cycle. Ion exchange by diffusion based on concentration gradient without applied potential also occurred simultaneously. Read More
-
A Sobering Examination of the Feasibility of Aqueous Aluminum Batteries
We revealed the first compelling evidence for a dynamic octahedral solvation structure around Al3+ dominated by labile water and OH-, without Al-OTf contact ion pairs, at high salt concentrations. High proton activity is observed in transport and electrochemical measurements which relates well with the proposed solvation environment. Read More
-
Ion Migration Mechanisms in the Sodium Sulfide Solid Electrolyte Na3-xSb1-xWxS4
The atomic-scale mechanisms that underlie the exceptionally high ionic conductivity of Na3-xSb1-xWxS4 are elucidated. The conductivity is well explained by a combination of vacancy-related effects and a strong overlap of cation vibrational modes with anion librations. Read More
Latest Updates
See All-
A Message from JCESR: In Memory of George Crabtree
It is with heavy hearts that we say goodbye to George Crabtree, a Senior Scientist and Distinguished Fellow at Argonne National Laboratory, and Director of the Joint Center for Energy Storage Research (JCESR), who passed away unexpectedly on January 23. Dr. Read More
-
Cyanopyridines As Extremely Low-Reduction-Potential Anolytes for Nonaqueous Redox Flow Batteries
Discovery of a cyanophenylpyridine derivative with a very low reduction potential and good stability during cycling. Read More
-
Characterizing Redoxmer – Electrode Kinetics Using a SECM-Based Spot Analysis Method
Identified asymmetries in electron transfer (ET) kinetics between the reduction and oxidation of ferrocene-based redoxmers by measuring the ET rate constants (kf/kb) as a function of electrode potential. Read More
-
Benzotriazoles as Low Potential Anolytes for Non-Aqueous Redox Flow Batteries
We developed an easy-to-synthesize benzotriazole-based anolyte with a high energy redox potential (-2.3 V vs Fc/Fc+) and high solubility that demonstrates stable electrochemical cycling performance. Read More
-
Automated Measurement of Electrogenerated Redox Species Degradation Using Multiplexed Interdigitated Electrode Arrays
Microfabricated devices enabled an automated methodology to quickly screen redoxmer degradation kinetics at concentrations up to 0.5 M. Read More