Published Papers – 2018

Huang, Q.; Lourenco, T. C.; Costa, L. T.; Zhang, Y.; Maginn, E. J., “Solvation Structure and Dynamics of Li+ in Ternary Ionic Liquid−Lithium Salt Electrolytes”, Journal of Physical Chemistry B, December 13, 2018, DOI: 10.1021/acs.jpcb.8b08859. View

Hu, L.; Johnson, I. D.; Kim, S.; Nolis, G. M.; Freeland, J.; Yoo, H. D.; Fister, T. T.; McCafferty, L.; Ashton, T. E.; Darr, J. A.; Cabana, J., “Tailoring the Electrochemical Activity of Magnesium Chromium Oxide Towards Mg Batteries Through Control of Size and Crystal Structure”, Nanoscale, December 03, 2018, DOI: 10.1039/C8NR08347A. View

Majidi, L.; Yasaei, P.; Warburton, R. E.; Fuladi, S.; Cavin, J.; Hu, X.; Hemmat, Z.; Cho, S. B.; Abbasi, P.; Voros, M.; Cheng, L.; Sayahpour, B.; Bolotin, I.; Zapol, P.; Greeley, J.; Klie, R. F.; Mishra, R.; Khalili-Araghi, F.; Curtiss, L. A.; Salehi-Khojin, A., “New Class of Electrocatalysts Based on 2D Transition Metal Dichalcogenides in Ionic Liquid”, Advanced Materials, November 30, 2018, DOI: 10.1002/adma.201804453. View

Ansari, Y.; Zhang, S.; Wen, B.; Fan, F.; Chiang, Y-M., “Stabilizing Li–S Battery Through Multilayer Encapsulation of Sulfur”, Advanced Energy Materials, November 13, 2018, DOI: 10.1002/aenm.201802213. View

Zhang, Y.; Khalifa, Y.; Maginn, E. J.; Newberg, J. T., “Anion Enhancement at the Liquid−Vacuum Interface of an Ionic Liquid Mixture”, Journal of Physical Chemistry C, November 05, 2018, DOI: 10.1021/acs.jpcc.8b07995. View

Hu, J. Z.; Jaegers, N. R.; Hu, M. Y.; Mueller, K. T., “In situ and ex situ NMR for battery research”, Journal of Physics-Condensed Matter, October 30, 2018, DOI: 10.1088/1361-648X/aae5b8. View

Rocha, M. A.; Zhang, Y.; Maginn, E. J.; Shiflett, M. B., “Simulation and measurement of water-induced liquid-liquid phase separation of imidazolium ionic liquid mixtures”, Journal of Chemical Physics, October 29, 2018, DOI: 10.1063/1.5054786. View

Greco, K. V.; Forner-Cuenca, A.; Mularczyk, A.; Eller, J.; Brushett, F. R., “Elucidating the Nuanced Effects of Thermal Pretreatment on Carbon Paper Electrodes for Vanadium Redox Flow Batteries”, ACS Applied Materials & Interfaces, October 17, 2018, DOI: 10.1021/acsami.8b15793. View

Pesko, D. M.; Feng, Z.; Sawhney, S.; Newman, J.; Srinivasan, V.; Balsara, N. P., “Comparing Cycling Characteristics of Symmetric Lithium-Polymer-Lithium Cells with Theoretical Predictions”, Journal of the Electrochemical Society, October 15, 2018, DOI: 10.1149/2.0921813jes. View

Hallinan, D. T.; Villaluenga, I.; Balsara, N. P., “Polymer and composite electrolytes”, MRS Bulletin, October 10, 2018, DOI: 10.1557/mrs.2018.212. View

Tung, S. O.; Fisher, S. L.; Kotov, N. A.; Thompson, L. T., “Nanoporous aramid nanofibre separators for nonaqueous redox flow batteries”, Nature Communications, October 10, 2018, DOI: 10.1038/s41467-018-05752-x. View

Nemani, V. P.; Smith, K. C., “Analysis of Crossover-Induced Capacity Fade in Redox Flow Batteries with Non-Selective Separators”, Journal of the Electrochemical Society, October 04, 2018, DOI:  10.1149/2.0701813jes. View

Nolis, G. M.; Bolotnikov, J. M.; Cabana, J., “Control of Size and Composition of Colloidal Nanocrystals of Manganese Oxide”, Inorganic Chemistry, October 02, 2018, DOI: 10.1021/acs.inorgchem.8b02124. View

Huang, J.; Yang, Z.; Murugesan, V.; Walter, E.; Hollas, A.; Pan, B.; Assary, R. S.; Shkrob, I. A.; Wei, X.; Zhang, Z., “Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries”, ACS Energy Letters, September 25, 2018, DOI: 10.1021/acsenergylett.8b01550. View

Pesko, D. M.; Sawhney, S.; Newman, J.; Balsara, N. P., “Comparing Two Electrochemical Approaches for Measuring Transference Numbers in Concentrated Electrolytes”, Journal of the Electrochemical Society, September 21, 2018, DOI: 10.1149/2.0231813jes. View

Li, L.; Ma, L.; Helms, B. A., “Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition”, Macromolecules, September 21, 2018, DOI: 10.1021/acs.macromol.8b01188. View

Barnes, T. A.; Wan, L. F.; Kent, P. R. C.; Prendergast, D., “Hybrid DFT investigation of the energetics of Mg ion diffusion in alpha-MoO3″, Physical Chemistry Chemical Physics, September 14, 2018, DOI: 10.1039/c8cp05511d. View

Tepavcevic, S.; Connell, J. G.; Lopes, P. P.; Bachhav, M.; Key, B.; Valero-Vidal, C.; Crumlin, E. J.; Stamenkovic, V. R.; Markovic, N. M., “Role of structural hydroxyl groups in enhancing performance of electrochemically-synthesized bilayer V2O5”, Nano Energy, September 04, 2018, DOI: 10.1016/j.nanoen.2018.09.005. View

Villaluenga, I.; Pesko, D. M.; Timachova, K.; Feng, Z.; Newman, J.; Srinivasan, V.; Balsara, N. P., “Negative Stefan-Maxwell Diffusion Coefficients and Complete Electrochemical Transport Characterization of Homopolymer and Block Copolymer Electrolytes”, Journal of the Electrochemical Society, August 25, 2018, DOI: 10.1149/2.0641811jes. View

Xia, C.; Kwok, C. Y.; Nazar, L. F., “A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide”, Science, August 24, 2018, DOI: 10.1126/science.aas9343. View

Zhang, Y. S.; Zhang, Y.; McCready, M. J.; Maginn, E. J., “Evaluation and Refinement of the General AMBER Force Field for Nineteen Pure Organic Electrolyte Solvents”, Journal of Chemical and Engineering Data, August 23, 2018, DOI: 10.1021/acs.jced.8b00382. View

Sethi, G. K.; Jiang, X.; Chakraborty, R.; Loo, W. S.; Villaluenga, I.; Balsara, N. P., “Anomalous Self-Assembly and Ion Transport in Nanostructured Organic-Inorganic Solid Electrolytes”, ACS Macro Letters, August 14, 2018, DOI: 10.1021/acsmacrolett.8b00583. View

Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F., “Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries”, Nature Energy, August 13, 2018, DOI: 10.1038/s41560-018-0214-0. View

Lopes, P. P.; Zorko, M.; Hawthorne, K. L.; Connell, J. G.; Ingram, B. J.; Strmcnik, D.; Stamenkovic, V. R.; Markovic, N. M., “Real-Time Monitoring of Cation Dissolution/Deintercalation Kinetics from Transition-Metal Oxides in Organic Environments”, Journal of Physical Chemistry Letters, July 30, 2018, DOI: 10.1021/acs.jpclett.8b01936. View

Hahn, N. T.; Seguin, T. J.; Lau, K. C.; Liao, C.; Ingram, B. J.; Persson, K. A.; Zavadil, K. R., “Enhanced Stability of the Carba-closo-dodecaborate Anion for High-Voltage Battery Electrolytes through Rational Design”, Journal of the American Chemical Society, July 30, 2018, DOI: 10.1021/jacs.8b05967. View

Barton, J. L.; Milshtein, J. D.; Hinricher, J. J.; Brushett, F. R., “Quantifying the impact of viscosity on mass-transfer coefficients in redox flow batteries”, Journal of Power Sources, July 27, 2018, DOI: 10.1016/j.jpowsour.2018.07.046. View

Chen, L.; Chen, K. S.; Chen, X. J.; Ramirez, G.; Huang, Z. N.; Geise, N. R.; Steinruck, H. G.; Fisher, B. L.; Shahbazian-Yassar, R.; Toney, M. F.; Hersam, M. C.; Elam, J. W., “Novel ALD Chemistry Enabled Low-Temperature Synthesis of Lithium Fluoride Coatings for Durable Lithium Anodes”, ACS Applied Materials & Interfaces, July 09, 2018, DOI: 10.1021/acsami.8b04573. View

Zhang, J.; Huang, J.; Robertson, L. A.; Shkrob, I. A.; Zhang, L., “Comparing calendar and cycle life stability of redox active organic molecules for nonaqueous redox flow batteries”, Journal of Power Sources, July 07, 2018, DOI: 10.1016/j.jpowsour.2018.07.001. View

Wustrow, A.; Key, B.; Phillips, P. J.; Sa, N. Y.; Lipton, A. S.; Klie, R. F.; Vaughey, J. T.; Poeppelmeier, K. R., “Synthesis and Characterization of MgCr2S4 Thiospinel as a Potential Magnesium Cathode”, Inorganic Chemistry, July 03, 2018, DOI: 10.1021/acs.inorgchem.8b01417. View

Gossage, Z. T.; Hernandez-Burgos, K.; Moore, J. S.; Rodriguez-Lopez, J., “Impact of Charge Transport Dynamics and Conditioning on Cycling Efficiency within Single Redox Active Colloids”, CHEMELECTROCHEM, July 02, 2018, DOI: 10.1002/celc.201800736. View

Dieterich, V.; Milshtein, J. D.; Barton, J. L.; Carney, T. J.; Darling, R. M.; Brushett, F. R., “Estimating the cost of organic battery active materials: a case study on anthraquinone disulfonic acid”, Translational Materials Research, July 01, 2018, DOI: 10.1088/2053-1613/aacb0e. View

Pan, C., Zhang, R., Nuzzo, R.G., Gewirth, A.A., “ZnNixMnxCo2–2xO4 Spinel as a High‐Voltage and High‐Capacity Cathode Material for Nonaqueous Zn‐Ion Batteries”, Advanced Energy Materials, May 16, 2018, DOI: 10.1002/aenm.201800589. View

Baran, M.J., Braten, M.N., Montoto, E.C., Gossage, Z.T., Ma, L., Chenard, E., Moore, J.S., Rodriguez-Lopez, J., Helms, B.A., “Designing Redox-Active Oligomers for Crossover-Free, Non-Aqueous Redox-Flow Batteries with High Volumetric Energy Density”, Chemistry of Materials, May 15, 2018, DOI: 10.1021/acs.chemmater.8b01318. View

Wang, H., Adams, B.D., Pan, H., Zhang, L., Han, K.S., Estevez, L., Lu, D., Jia, H., Feng, J., Guo, J., Zavadil, K.R., Shao, Y., Zhang, J-G., “Tailored Reaction Route by Micropore Confinement for Li–S Batteries Operating under Lean Electrolyte Conditions”, Advanced Energy Materials, May 10, 2018, DOI: 10.1002/aenm.201800590. View

Lowe, J.S., Siegel, D.J., “Reaction Pathways for Solvent Decomposition on Magnesium Anodes”, Journal of Physical Chemistry C, May 02, 2018, DOI: 10.1021/acs.jpcc.8b01752. View

Rajput, N.N., Seguin, T.J., Wood, B.M., Qu, X., Persson, K.A., “Elucidating Solvation Structures for Rational Design of Multivalent Electrolytes—A Review”, Topics in Current Chemistry, April 26, 2018, DOI: 10.1007/s41061-018-0195-2. View

Montoto, E.C., Cao, Y., Hernandez-Burgos, K., Sevov, C.S., Braten, M.N., Helms, B.A., Moore, J.S., Rodriquez-Lopez, J., “Effect of the Backbone Tether on the Electrochemical Properties of Soluble Cyclopropenium Redox-Active Polymers”, Macromolecules, April 23, 2018, DOI: 10.1021/acs.macromol.8b00574. View

Zhang, J., Corman, R.E., Schuh, J.K., Ewoldt, R.H., Shkrob, I.A., Zhang, L., “Solution Properties and Practical Limits of Concentrated Electrolytes for Nonaqueous Redox Flow Batteries”, Journal of Physical Chemistry C, April 19, 2018, DOI: 10.1021/acs.jpcc.8b02009. View

Zhang, J., Huang, J., Robertson, L.A., Assary, R.S., Shkrob, I.A., Zhang, L., “Elucidating Factors Controlling Long-Term Stability of Radical Anions for Negative Charge Storage in Nonaqueous Redox Flow Batteries”, Journal of Physical Chemistry C, April 04, 2018, DOI: 10.1021/acs.jpcc.8b01434. View

Asadi, M., Sayahpour, B., Abbasi, P., Ngo, A.T., Jokisaari, J.R., Liu, C., Narayanan, B., Gerard, M., Yasaei, P., Hu, X., Mukherjee, A., Lau, K.C., Assary, R.S., Khalili-Araghi, F., Klie, R.F., Curtiss, L.A., Salehi-Khojin, A., “A lithium–oxygen battery with a long cycle life in an air-like atmosphere”, Nature, March 21, 2018, DOI: 10.1038/nature25984. View

Huang, J., Duan, W., Zhang, J., Shkrob, I.A., Assary, R.S., Pan, B., Liao, C., Zhang, Z., Wei, W., Zhang, L., “Substituted Thiadiazoles as Energy-Rich Anolytes for Nonaqueous Redox Flow Cells”, Journal of Materials Chemistry A, March 13, 2018, DOI: 10.1039/C8TA01059E. View

Lourenço, T.C., Zhang, Y., Costa, L.T., Maginn, E.J., “A molecular dynamics study of lithium-containing aprotic heterocyclic ionic liquid electrolytes”, Journal of Chemical Physics, February 28, 2018, DOI: 10.1063/1.5016276. View

Ta, K., See, K.A., Gewirth, A.A., “Elucidating Zn and Mg Electrodeposition Mechanisms in Nonaqueous Electrolytes for Next-Generation Metal Batteries”, Journal of Physical Chemistry C, February 26, 2018, DOI: 10.1021/acs.jpcc.8b00835. View

Pan, H., Han, K.S., Engelhard, M.H., Cao, R., Chen, J., Zhang, J-G., Mueller, K.T., Shao, Y., Liu, J., “Addressing Passivation in Lithium–Sulfur Battery  Under Lean Electrolyte Condition”, Advanced Functional Materials, February 23, 2018, DOI: 10.1002/adfm.201707234. View

Thelen, J.L., Wang, A.A., Chen, X.C., Jiang, X., Schaible, E., Balsara, N.P., “Correlations between Salt-Induced Crystallization, Morphology, Segmental Dynamics, and Conductivity in Amorphous Block Copolymer Electrolytes”, Macromolecules, February 20, 2018, DOI: 10.1021/acs.macromol.7b02415. View

Kim, C., Adil, A.A., Bayliss, R.D., Kinnibrugh, T.L., Lapidus, S.H., Nolis, G.M., Freeland, J.W., Phillips, P.J., Yi, T., Yoo, H.D., Kwon, B.J., Yu, Y-S., Klie, R., Chupas, P.J., Chapman, K.W., Cabana, J., “Multivalent Electrochemistry of Spinel MgxMn3–xO4 Nanocrystals”, Chemistry of Materials, February 20, 2018, DOI: 10.1021/acs.chemmater.7b03640. View

Kundu, D., Vajargah, S.H., Wan, L., Adams, B., Prendergast, D., Nazar, L.F., “Aqueous vs Nonaqueous Zn-Ion Batteries: Consequences of the Desolvation Penalty at the Interface”, Energy & Environmental Science, February 19, 2018, DOI: 10.1039/C8EE00378E. View

Horowitz, Y., Steinruck, H-G., Han, H-L., Cao, C., Abate, I.I., Tsao, Y., Toney, M.F., Somorjai, G.A., “Fluoroethylene Carbonate Induces Ordered Electrolyte Interface on Silicon and Sapphire Surfaces as Revealed by Sum Frequency Generation Vibrational Spectroscopy and X‑ray Reflectivity”, Nano Letters, February 16, 2018, DOI: acs.nanolett.8b00298. View

Al-Hallaj, S., Wilk, G., Crabtree, G., Eberhard, M., “Overview of distributed energy storage for demand charge reduction”, MRS Energy & Sustainability, February 15, 2018, DOI: 10.1557/mre.2017.18. View

Nolis, G.M., Adil, A., Yoo, H.D., Hu, L., Bayliss, R.D., Lapidus, S.H., Berkland, L., Phillips, P.J., Freeland, J.W., Kim, C., Klie, R.F., Cabana, J., “Electrochemical Reduction of a Spinel-Type Manganese Oxide Cathode in Aqueous Electrolytes with Ca2+ or Zn2+”, Journal of Physical Chemistry C, February 06, 2018, DOI: 10.1021/acs.jpcc.7b12084. View

Khabaz, F., Zhang, Y., Xue, L., Quitevis, E.L., Maginn, E.J., Khare, R., “Temperature Dependence of Volumetric and Dynamic Properties of Imidazolium-Based Ionic Liquids”, Journal of Physical Chemistry B, February 05, 2018, DOI: 10.1021/acs.jpcb.7b12236. View

Hu, J.Z., Rajput, N.N., Wan, C., Shao, Y., Deng, X., Jaegers, N.R., Hu, M., Chen, Y., Shin, Y., Monk, J., Chen, Z., Qin, Z., Mueller, K.T., Liu, J., Persson, K., “Mg NMR and Computational Modeling Studies of the Solvation Structures and Molecular Dynamics in Magnesium Based Liquid Electrolytes”, Nano Energy, February 02, 2018, DOI: 10.1016/j.nanoen.2018.01.051. View

Huang, J., Yang, Z., Vijayakumar, M., Duan, W., Hollas, A., Pan, B., Wang, W., Wei, W., Zhang, L., “A Two-Electron Storage Nonaqueous Organic Redox Flow Battery”, Advanced Sustainable Systems, February 02, 2018, DOI: 10.1002/adsu.201700131. View

Andrews, J.L., Mukherjee, A., Yoo, H.D., Parija, A., Marley, P.M., Fakra, S., Prendergast, D., Cabana, J., Klie, R.F., Banerjee, S., “Reversible Mg-Ion Insertion in a Metastable One-Dimensional Polymorph of V2O5”, Chem, February 01, 2018, DOI: 10.1016/j.chempr.2017.12.018. View

Chen, L., Huang, Z., Shahbazian-Yassar, R., Libera, J.A., Klavetter, K.C., Zavadil, K.R., Elam, J.W., “Directly Formed Alucone on Lithium Metal for High-Performance Li Batteries and Li–S Batteries with High Sulfur Mass Loading”, ACS Applied Materials & Interfaces, January 30, 2018, DOI: 10.1021/acsami.7b15879. View

Burgess, M., Hernandez-Burgos, K., Schuh, J.K., Davila, J., Montoto, E.C., Ewoldt, R.H., Rodriguez-Lopez, R., “Modulation of the Electrochemical Reactivity of Solubilized Redox Active Polymers via Polyelectrolyte Dynamics”, Journal of the American Chemical Society, January 25, 2018, DOI: 10.1021/jacs.7b08353. View

Steinruck, H-G., Cao, C., Tsao, Y., Takacs, C.J., Konovalov, O., Vatamanu, J., Borodin, O., Toney, M.F., “The nanoscale structure of the electrolyte–metal oxide interface”, Energy & Environmental Science, January 24, 2018, DOI: 10.1039/c7ee02724a. View

Santiago, C.B., Guo, J-Y., Sigman, M.S., “Predictive and mechanistic multivariate linear regression models for reaction development”, Chemical Science, January 23, 2018, DOI:  10.1039/c7sc04679k. View

Hendriks, K.H., Robinson, S.G., Braten, M.N., Sevov, C.S., Helms, B.A., Sigman, M.S., Minteer, S.D., Sanford, M.S., “High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries”, ACS Central Science, January 17, 2018, DOI: 10.1021/acscentsci.7b00544. View

Zimmermann, N.E.R., Hannah, D.C., Rong, Z., Liu, M., Ceder, G., Haranczyk, M., Persson, K., “Electrostatic Estimation of Intercalant Jump-Diffusion Barriers Using Finite-Size Ion Models”, Journal of Physical Chemistry Letters, January 10, 2018, DOI: 10.1021/acs.jpclett.7b03199. View

Hwa, Y., Frischmann, P.D., Helms, B., Cairns, E.J., “Aqueous-Processable Redox-Active Supramolecular Polymer Binders for Advanced Lithium/Sulfur Cells”, Chemistry of Materials, January 09, 2018, DOI: 10.1021/acs.chemmater.7b03870. View

Li, C., Meckler, S.M., Smith, Z.P., Bachman, J.E., Maserati, L., Long, J.R., Helms, B.A., “Engineered Transport in Microporous Materials  and Membranes for Clean Energy Technologies”, Advanced Materials, January 08, 2018, DOI: 10.1002/adma.201704953. View

Zhang, J., Shkrob, I.A., Assary, R.S., Zhang, S., Hu, B., Liao, C., Zhang, Z., Zhang, L., “Dual overcharge protection and solid electrolyte interphase-improving action in Li-ion cells containing a bis-annulated dialkoxyarene electrolyte additive“, Journal of Power Sources, January 04, 2018, DOI: 10.1016/j.jpowsour.2017.12.059. View

Latest Updates

See All
  • A Message from JCESR Director George Crabtree

    Despite the coronavirus challenges, JCESR continues to push the frontier of energy storage science as we telecommute from home, like much of the nation. We are turning our attention to computation, data analysis and paper writing which continues at a normal or higher pace, enabled … Read More

  • You’re invited: Idaho National Laboratory and JCESR webinar on energy storage (March 18 )

    Electrification is changing the energy landscape of the Mountain West region. While energy storage remains a key enabler to this transformation, infrastructure upgrade and supply chain development will be a key driver for this new economy. Join us on March 18 for a webinar where we’ll … Read More

  • Direct Nano-Synthesis Methods Notably Benefit Mg-Battery Cathode Performance

    A novel Mg cathode material – CuCo2S4 – was identified as a conversion material where direct nano-synthesis was required to provide the best electrochemical performance and deliver 350 mAh·g-1 at 60 °C, a capacity nearly double that of ball-milled material with similar dimensions. Read More

  • Quantifying Capacity Losses due to Solid Electrolyte Interphase Evolution

    We quantified the capacity loss originating in solid electrolyte interphase (SEI) growth during each cycle and extracted the proportionality constant for SEI growth following a parabolic growth law. This continuous SEI growth contributes to the increasing overpotential, leading to capacity fading at a given constant … Read More

  • On Lifetime and Cost of Redox-Active Organics for Aqueous Flow Batteries

    In this viewpoint, we recommend methodology for (1) testing aqueous organic flow batteries to better understand the fade mechanisms and failure modes, and for (2) techno-economic assessment of these batteries that incorporates the costs associated with electrolyte decay and replacement to articulate a feasible design … Read More