Published Papers – 2022

Blanc, L. E.; Choi, Y.; Shyamsunder, A.; Key, B.; Lapidus, S. H.; Li, C.; Yin, L.; Li, X.; Gwalani, B.; Xiao, Y.; Bartel, C. J.; Ceder, G.; Nazar, L. F., “Phase Stability and Kinetics of Topotactic Dual Ca2+–Na+ Ion Electrochemistry in NaSICON NaV2(PO4)3“, Chemistry of Materials, December 30, 2022, DOI: 10.1021/acs.chemmater.2c02816. View

Tsai, P. C.; Mair, S.; Smith, J.; Halat, D. M.; Chien, P. H.; Kim, K.; Zhang, D.; Li, Y.; Yin, L.; Liu, J.; Lapidus, S. H.; Reimer, J. A.; Balsara, N. P.; Siegel, D. J.; Chiang, Y. M., “Double Paddle-Wheel Enhanced Sodium Ion Conduction in an Antiperovskite Solid Electrolyte“, Advanced Energy Materials, December 28, 2022, DOI: 10.1002/aenm.202203284. View

Ding, M.; Cresce, A. V.; Eidson, N.; Xu, K., “Polymer-Supported Aqueous Electrolytes for Lithium Ion Batteries: Part II. Conductivity Gain Upon Polymerization and Double Glass Transition in LiTFSI + H2O + PDA Gels“, Journal of The Electrochemical Society, December 28, 2022, DOI: 10.1149/1945-7111/acaacf. View

Lee, J.; Gao, K. W.; Shah, N. J.; Kang, C.; Snyder, R. L.; Abel, B. A.; He, L.; Teixeira, S. C. M.; Coates, G. W.; Balsara, N. P., “Relationship between Ion Transport and Phase Behavior in Acetal-Based Polymer Blend Electrolytes Studied by Electrochemical Characterization and Neutron Scattering“, Macromolecules, December 12, 2022, DOI: 10.1021/acs.macromol.2c01724. View

Gaddam, R.; Sarbapalli, D.; Howard, J.; Curtiss, L. A.; Assary, R. S.; Rodriguez-Lopez, J., “An SECM-Based Spot Analysis for Redoxmer-Electrode Kinetics: Identifying Redox Asymmetries on Model Graphitic Carbon Interfaces“, Chemistry – An Asian Journal, December 08, 2022, DOI: 10.1002/asia.202201120. View

Meng, Y. S.; Srinivasan, V.; Xu, K., “Designing better electrolytes“, Science, December 09, 2022, DOI: 10.1126/science.abq3750. View

Gaddam, R.; Sarbapalli, D.; Howard, J.; Curtiss, L. A.; Assary, R. S.; Rodriguez-Lopez, J., “An SECM-Based Spot Analysis for Redoxmer-Electrode Kinetics: Identifying Redox Asymmetries on Model Graphitic Carbon Interfaces“, Chemistry – An Asian Journal, December 08, 2022, DOI: 10.1002/asia.202201120. View

Tan, S.; Kim, J. M.; Corrao, A.; Ghose, S.; Zhong, H.; Rui, N.; Wang, X.; Senanayake, S.; Polzin, B. J.; Khalifah, P.; Xiao, J.; Liu, J.; Xu, K.; Yang, X. Q.; Cao, X.; Hu, E., “Unravelling the convoluted and dynamic interphasial mechanisms on Li metal anodes“, Nature Nanotechnology, December 05, 2022, DOI: 10.1038/s41565-022-01273-3. View

Grundy, L. S.; Fu, S.; Galluzzo, M. D.; Balsara, N. P., “The Effect of Annealing on the Grain Structure and Ionic Conductivity of Block Copolymer Electrolytes“, Macromolecules, December 05, 2022, DOI: 10.1021/acs.macromol.2c01837. View

Spotte-Smith, E. W. C.; Petrocelli, T. B.; Patel, H. D.; Blau, S. M.; Persson, K. A., “Elementary Decomposition Mechanisms of Lithium Hexafluorophosphate in Battery Electrolytes and Interphases“, ACS Energy Letters, December 05, 2022, DOI: 10.1021/acsenergylett.2c02351. View

Xie, X.; Leon, N. J.; Small, D. W.; Spotte-Smith, E. W. C.; Liao, C.; Persson, K. A., “Reductive Decomposition Kinetics and Thermodynamics That Govern the Design of Fluorinated Alkoxyaluminate/Borate Salts for Mg-Ion and Ca-Ion Batteries“, Journal of Physical Chemistry C, November 30, 2022, DOI: 10.1021/acs.jpcc.2c06653. View

Im, J.; Halat, D. M.; Fang, C.; Hickson, D. T.; Wang, R.; Balsara, N. P.; Reimer, J. A., “Understanding the Solvation Structure of Li-Ion Battery Electrolytes Using DFT-Based Computation and 1H NMR Spectroscopy“, Journal of Physical Chemistry B, November 16, 2022, DOI: 10.1021/acs.jpcb.2c06415. View

Wolfenstine, J.; Go, W.; Kim, Y.; Sakamoto, J., “Mechanical properties of NaSICON: a brief review“, Ionics, November 15, 2022, DOI: 10.1007/s11581-022-04820-z. View

Ding, M. S.; Cresce, A. V.; Eidson, N.; Xu, K., “Polymer-Supported Aqueous Electrolytes for Lithium Ion Batteries: I. Application of a Thermoconductometric Method to a LiTFSI + H2O + PDA Electrolyte System“, Journal of The Electrochemical Society, November 14, 2022, DOI: 10.1149/1945-7111/aca051. View

Fagnani, D. E.; Kim, D.; Camarero, S. I.; Alfaro, J. F.; McNeil, A. J., “Using waste poly(vinyl chloride) to synthesize chloroarenes by plasticizer-mediated electro(de)chlorination“, Nature Chemistry, November 14, 2022, DOI: 10.1038/s41557-022-01078-w. View

Yan, Y.; Zhang, L.; Walser-Kuntz, R.; Vogt, D. B.; Sigman, M. S.; Yu, G.; Sanford, M. S., “Benzotriazoles as Low-Potential Anolytes for Non-aqueous Redox Flow Batteries“, Chemistry of Materials, November 14, 2022, DOI: 10.1021/acs.chemmater.2c02682. View

Wan, C. T. C.; Rodby, K. E.; Perry, M. L.; Chiang, Y. M.; Brushett, F. R., “Hydrogen evolution mitigation in iron-chromium redox flow batteries via electrochemical purification of the electrolyte“, Journal of Power Sources, November 10, 2022, DOI: 10.1016/j.jpowsour.2022.232248. View

Fang, X.; Cavazos, A. T.; Li, Z.; Li, C.; Xie, J.; Wassall, S. R.; Zhang, L.; Wei, X., “Six-electron organic redoxmers for aqueous redox flow batteries“, Chemical Communications, November 07, 2022, DOI: 10.1039/d2cc04648b. View

Pence, M. A.; Rodriguez, O.; Lukhanin, N. G.; Schroeder, C. M.; Rodriguez-Lopez, J., “Automated Measurement of Electrogenerated Redox Species Degradation Using Multiplexed Interdigitated Electrode Arrays“, ACS Measurement Science Au, November 01, 2022, DOI: 10.1021/acsmeasuresciau.2c00054. View

Yan, Y.; Sitaula, P.; Odom, S. A.; Vaid, T. P., “High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte“, ACS Applied Materials & Interfaces, October 31, 2022, DOI: 10.1021/acsami.2c10072. View

Tomich, A.; Park, J.; Son, S.-B.; Kamphaus, E.; Lyu, X.; Dogan, F.; Carta, V.; Gim, J.; Li, T.; Cheng, L.; Lee, E.; Lavallo, V.; Johnson, C., “A Carboranyl Electrolyte Enabling Highly Reversible Sodium Metal Anodes via a “Fluorine-Free” SEI“, Angewandte Chemie-International Edition, October 27, 2022, DOI: 10.1002/anie.202208158. View

Sundararaman, S.; Halat, D. M.; Reimer, J. A.; Balsara, N. P.; Prendergast, D., “Understanding the Impact of Multi-Chain Ion Coordination in Poly(ether-Acetal) Electrolytes“, Macromolecules, October 27, 2022, DOI: 10.1021/acs.macromol.2c01897. View

Peltier, C. R.; Rhodes, Z.; Macbeth, A. J.; Milam, A.; Carroll, E.; Coates, G. W.; Minteer, S. D., “Suppressing Crossover in Nonaqueous Redox Flow Batteries with Polyethylene-Based Anion-Exchange Membranes“, ACS Energy Letters, October 26, 2022, DOI: 10.1021/acsenergylett.2c01551. View

Zhou, L.; Zhang, Q.; Nazar, L. F., “Li-Rich and Halide-Deficient Argyrodite Fast Ion Conductors“, Chemistry of Materials, October 25, 2022, DOI: 10.1021/acs.chemmater.2c02343. View

Fenton, A. M.; Gandomi, Y. A.; Mallia, C. T.; Neyhouse, B. J.; Kpeglo, M. A.; Exson, W. E.; Wan, C. T. C.; Brushett, F. R., “Toward a Mechanically Rechargeable Solid Fuel Flow Battery Based on Earth-Abundant Materials“, ACS Omega, October 25, 2022, DOI: 10.1021/acsomega.2c05798 View

Chen, W.; Zhan, X.; Yuan, R.; Pidaparthy, S.; Yong, A. X. B.; An, H.; Tang, Z.; Yin, K.; Patra, A.; Jeong, H.; Zhang, C.; Ta, K.; Riedel, Z. W.; Stephens, R. M.; Shoemaker, D. P.; Yang, H.; Gewirth, A. A.; Braun, P. V.; Ertekin, E.; Zuo, J. M.; Chen, Q., “Formation and impact of nanoscopic oriented phase domains in electrochemical crystalline electrodes“, Nature Materials, October 24, 2022, DOI: 10.1038/s41563-022-01381-4. View

Yun, S. H.; Han, S. D.; Borodin, O.; Seo, D. M.; Afroz, T.; Sommer, R. D.; Henderson, W. A., “Solvate Structures and Computational/Spectroscopic Characterization of LiCF3SO3 Electrolytes“, Journal of Physical Chemistry C, October 20, 2022, DOI: 10.1021/acs.jpcc.2c06170. View

Blocher McTigue, W. C.; Sing, C. E., “Competing Time Scales in Surface-Driven Solution Depolymerization“, Macromolecules, October 14, 2022, DOI: 10.1021/acs.macromol.2c01528. View

Yue, J.; Zhang, J.; Tong, Y.; Chen, M.; Liu, L.; Jiang, L.; Lv, T.; Hu, Y. S.; Li, H.; Huang, X.; Gu, L.; Feng, G.; Xu, K.; Suo, L.; Chen, L., “Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime“, Nature Chemistry, October 11, 2021, DOI: 10.1038/s41557-021-00787-y. View

Sanz-Matias, A.; Roychoudhury, S.; Feng, X.; Yang, F.; Kao, L. C.; Zavadil, K. R.; Guo, J.; Prendergast, D., “Excitonic Effects in X-ray Absorption Spectra of Fluoride Salts and Their Surfaces“, Chemistry of Materials, October 11, 2022, DOI: 10.1021/acs.chemmater.2c02029. View

Perera, A. S.; Suduwella, T. M.; Attanayake, N. H.; Jha, R. K.; Eubanks, W. L.; Shkrob, I.; Risko, C.; Kaur, A. P.; Odom, S. A., “Large Variability and Complexity of Isothermal Solubility for a Series of Redox-Active Phenothiazines“, Materials Advances, October 04, 2022, DOI: 10.1039/d2ma00598k. View

Grundy, L. S.; Fu, S.; Hoffman, Z. J.; Balsara, N. P., “Electrochemical Characterization of PEO/LiTFSI Electrolytes Near the Solubility Limit“, Macromolecules, October 04, 2022, DOI: 10.1021/acs.macromol.2c01655. View

Trócoli, R.; Parajuli, P.; Frontera, C.; Black, A. P.; Alexander, G. C. B.; Roy, I.; Arroyo-de Dompablo, M. E.; Klie, R. F.; Cabana, J.; Palacín, M. R., “β-V2O5 as Magnesium Intercalation Cathode“, ACS Applied Energy Materials, October 03, 2022, DOI: 10.1021/acsaem.2c02371. View

Vaid, T.; Cook, M.; Scott, J.; Carazo, M. B.; Ruchti, J.; Minteer, S.; Sigman, M.; McNeil, A.; Sanford, M., “Theoretical and Experimental Investigation of Functionalized Cyanopyridines Yield an Extremely Low-Reduction-Potential Anolyte for Nonaqueous Redox Flow Batteries“, Chemistry – A European Journal, September 26, 2022, DOI: 10.1002/chem.202202147. View

Wang, C.; Mueller, T.; Assary, R. S., “Ionic Dynamics of the Charge Carrier in Layered Solid Materials for Mg Rechargeable Batteries“, Chemistry of Materials, September 22, 2022, DOI: 10.1021/acs.chemmater.2c01954. View

Park, C.; Shalini, S.; Ahmed, A.; Vaid, T. P.; Kim, K.; Matzger, A. J.; Siegel, D. J., “Calculation and Measurement of Salt Loading in Metal–Organic Frameworks“, Journal of Physical Chemistry C, September 19, 2022, DOI: 10.1021/acs.jpcc.2c04620. View

Hickson, D. T.; Halat, D. M.; Ho, A. S.; Reimer, J. A.; Balsara, N. P., “Complete Characterization of a Lithium Battery Electrolyte using a Combination of Electrophoretic NMR and Electrochemical Methods“, Physical Chemistry Chemical Physics, September 16, 2022, DOI: 10.1039/d2cp02622h. View

KC, B.; Guo, J.; Farrell, J.; Nolis, G. M.; Buchholz, D. B.; Evmenenko, G.; Cabana, J.; Crabtree, G. W.; Klie, R. F., “Molecular Beam Epitaxy (MBE) Growth of Model Cathodes to Study Interfacial Ion Diffusion“, Advanced Materials Interfaces, September 13, 2022, DOI: 10.1002/admi.202201187. View

Zou, P.; Lin, R.; Pollard, T. P.; Yao, L.; Hu, E.; Zhang, R.; He, Y.; Wang, C.; West, W. C.; Ma, L.; Borodin, O.; Xu, K.; Yang, X. Q.; Xin, H. L., “Localized Hydrophobicity in Aqueous Zinc Electrolytes Improves Zinc Metal Reversibility“, Nano Letters, September 07, 2022, DOI: 10.1021/acs.nanolett.2c02514. View

Tracy, J. S.; Horst, E. S.; Roytman, V. A.; Toste, F. D., “Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures“, Chemical Science, September 01, 2022, DOI: 10.1039/d2sc03450f. View

Sen, S.; Ewoldt, R. H., “Thixotropic spectra and Ashby-style charts for thixotropy“, Journal of Rheology, August 29, 2022, DOI: 10.1122/8.0000446. View

Wang, Y.; Ewoldt, R. H., “New insights on carbon black suspension rheology—Anisotropic thixotropy and antithixotropy“, Journal of Rheology, August 19, 2022, DOI: 10.1122/8.0000455. View

De La Garza, G. D.; Kaur, A. P.; Shkrob, I. A.; Robertson, L. A.; Odom, S. A.; McNeil, A. J., “Soluble and stable symmetric tetrazines as anolytes in redox flow batteries“, Journal of Materials Chemistry A, August 18, 2022, DOI: 10.1039/d2ta04515j. View

Grundy, L. S.; Galluzzo, M. D.; Loo, W. S.; Fong, A. Y.; Balsara, N. P.; Takacs, C. J., “Inaccessible Polarization-Induced Phase Transitions in a Block Copolymer Electrolyte: An Unconventional Mechanism for the Limiting Current“, Macromolecules, August 17, 2022, DOI: 10.1021/acs.macromol.2c00922. View

Daubert, J. S.; Afroz, T.; Borodin, O.; Seo, D. M.; Boyle, P. D.; Henderson, W. A., “Solvate Structures and Computational/Spectroscopic Characterization of LiClO4 Electrolytes“, Journal of Physical Chemistry C, August 17, 2022, DOI: 10.1021/acs.jpcc.2c03805. View

Yang, Z.; Yang, M.; Hahn, N. T.; Connell, J.; Bloom, I.; Liao, C.; Ingram, B. J.; Trahey, L., “Toward practical issues: Identification and mitigation of the impurity effect in glyme solvents on the reversibility of Mg plating/stripping in Mg batteries“, Frontiers in Chemistry, August 12, 2022, DOI: 10.3389/fchem.2022.966332. View

Li, C.; Jin, S.; Archer, L. A.; Nazar, L. F., “Toward practical aqueous zinc-ion batteries for electrochemical energy storage“, Joule, August 12, 2022, DOI: 10.1016/j.joule.2022.06.002. View

Self, J.; Hahn, N. T.; Persson, K. A., “Solvation Effects on the Dielectric Constant of 1 M LiPF6 in Ethylene Carbonate: Ethyl Methyl Carbonate 3:7“, Energy & Environmental Materials, August 11, 2022, DOI: 10.1002/eem2.12494. View

Ozdogru, B.; Murugesan, V.; Çapraz, Ö. Ö., “Rate-dependent electrochemical strain generation in composite iron phosphate cathodes in Li-ion batteries“, Journal of Materials Research, August 09, 2022, DOI: 10.1557/s43578-022-00649-4. View

Neyhouse, B. J.; Lee, J.; Brushett, F. R., “Connecting Material Properties and Redox Flow Cell Cycling Performance through Zero-Dimensional Models“, Journal of The Electrochemical Society, August 03, 2022, DOI: 10.1149/1945-7111/ac86aa. View

Mao, H.; Tang, J.; Day, G. S.; Peng, Y.; Wang, H.; Xiao, X.; Yang, Y.; Jiang, Y.; Chen, S.; Halat, D. M.; Lund, A.; Lv, X.; Zhang, W.; Yang, C.; Lin, Z.; Zhou, H. C.; Pines, A.; Cui, Y.; Reimer, J. A., “A scalable solid-state nanoporous network with atomic-level interaction design for carbon dioxide capture“, Science Advances, August 03, 2022, DOI: 10.1126/sciadv.abo6849. View

Hu, L.; Kim, S.; Jokisaari, J. R.; Nolis, G. M.; Yoo, H. D.; Freeland, J. W.; Klie, R. F.; Fister, T. T.; Cabana, J., “Synthesis and Mg2+ deintercalation in manganese spinel nanocrystals“, Journal of Solid State Chemistry, August 02, 2022, DOI: 10.1016/j.jssc.2022.123464. View

McClary, S. A.; Long, D. M.; Sanz-Matias, A.; Kotula, P. G.; Prendergast, D.; Jungjohann, K. L.; Zavadil, K. R., “A Heterogeneous Oxide Enables Reversible Calcium Electrodeposition for a Calcium Battery“, ACS Energy Letters, August 01, 2022, DOI: 10.1021/acsenergylett.2c01443. View

Balsara, N. P.; Newman, J., “Divergence of Velocity Fields in Electrochemical Systems“, Journal of The Electrochemical Society, July 29, 2022, DOI: 10.1149/1945-7111/ac8246. View

Kochetkov, I.; Zuo, T.-T.; Ruess, R.; Singh, B.; Zhou, L.; Kaup, K.; Janek, J.; Nazar, L., “Different interfacial reactivity of lithium metal chloride electrolytes with high voltage cathodes determines solid-state battery performance“, Energy & Environmental Science, July 29, 2022, DOI: 10.1039/d2ee00803c. view

Leon, N. J.; Xie, X.; Yang, M.; Driscoll, D. M.; Connell, J. G.; Kim, S.; Seguin, T.; Vaughey, J. T.; Balasubramanian, M.; Persson, K. A.; Liao, C., “Room-Temperature Calcium Plating and Stripping Using a Perfluoroalkoxyaluminate Anion Electrolyte“, Journal of Physical Chemistry C, July 29, 2022, DOI: 10.1021/acs.jpcc.2c03272. View

Johnson, I. D.; Mistry, A. N.; Yin, L.; Murphy, M.; Wolfman, M.; Fister, T. T.; Lapidus, S. H.; Cabana, J.; Srinivasan, V.; Ingram, B. J., “Unconventional Charge Transport in MgCr2O4 and Implications for Battery Intercalation Hosts“, Journal of the American Chemical Society, July 27, 2022, DOI: 10.1021/jacs.2c03491. View

Fenton, A. M.; Jha, R. K.; Neyhouse, B. J.; Kaur, A. P.; Dailey, D.; Odom, S. A.; Brushett, F. R., “On the Challenges of Materials and Electrochemical Characterization of Concentrated Electrolytes for Redox Flow Batteries“, Journal of Materials Chemistry A, July 25, 2022, DOI: 10.1039/d2ta00690a. View

Darling, R. M., “Techno-economic analyses of several redox flow batteries using levelized cost of energy storage“, Current Opinion in Chemical Engineering, July 23, 2022, DOI: 10.1016/j.coche.2022.100855. View

Sacci, R. L.; Bennett, T. H.; Fang, H.; Han, K. S.; Lames, M.; Murugesan, V.; Jena, P.; Nanda, J., “Halide sublattice dynamics drive Li-ion transport in antiperovskites“, Journal of Materials Chemistry A, July 13, 2022, DOI: 10.1039/d2ta02598a. View

Lewis, N. H. C.; Dereka, B.; Zhang, Y.; Maginn, E. J.; Tokmakoff, A., “From Networked to Isolated: Observing Water Hydrogen Bonds in Concentrated Electrolytes with Two-Dimensional Infrared Spectroscopy“, Journal of Physical Chemistry B, July 13, 2022, DOI: 10.1021/acs.jpcb.2c03341. View

Dandu, N. K.; Assary, R. S.; Redfern, P. C.; Ward, L.; Foster, I.; Curtiss, L. A., “Improving the Accuracy of Composite Methods: A G4MP2 Method with G4-like Accuracy and Implications for Machine Learning“, Journal of Physical Chemistry A, July 05, 2022, DOI: 10.1021/acs.jpca.2c01327. View

Hyler, F. P.; Wuille Bille, B. A.; Ortiz-Rodriguez, J. C.; Sanz-Matias, A.; Roychoudhury, S.; Perryman, J. T.; Patridge, C. J.; Singstock, N. R.; Musgrave, C. B.; Prendergast, D.; Velazquez, J. M., “X-ray absorption spectroscopy insights on the structure anisotropy and charge transfer in Chevrel Phase chalcogenides“, Physical Chemistry Chemical Physics, July 01, 2022, DOI: 10.1039/d1cp04851a. View

Lin, R.; He, Y.; Wang, C.; Zou, P.; Hu, E.; Yang, X. Q.; Xu, K.; Xin, H. L., “Characterization of the structure and chemistry of the solid–electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries“, Nature Nanotechnology, June 30, 2022, DOI: 10.1038/s41565-022-01148-7. View

Kim, K.; Siegel, D. J., “Machine Learning Reveals Factors that Control Ion Mobility in Anti-Perovskite Solid Electrolytes“, Journal of Materials Chemistry A, June 30, 2022, DOI: 10.1039/d2ta03613d. View

Mistry, A.; Yu, Z.; Peters, B. L.; Fang, C.; Wang, R.; Curtiss, L. A.; Balsara, N. P.; Cheng, L.; Srinivasan, V., “Toward Bottom-Up Understanding of Transport in Concentrated Battery Electrolytes“, ACS Central Science, June 28, 2022, DOI: 10.1021/acscentsci.2c00348. View

Ding, F.; Griffith, K. J.; Zhang, C.; Zhan, J.; Lu, H.; Poeppelmeier, K. R., “Synthesis, crystal structure, and magnetic properties of a one-dimensional chain antiferromagnet NiC2O4·2NH3“, Journal of Solid State Chemistry, June 24, 2022, DOI: 10.1016/j.jssc.2022.123360. View

Wang, Y.; Fukuda, M.; Nikolaev, S.; Miyake, A.; Griffith, K. J.; Nisbet, M. L.; Hiralal, E.; Gautier, R.; Fisher, B. L.; Tokunaga, M.; Azuma, M.; Poeppelmeier, K. R., “Two Distinct Cu(II)–V(IV) Superexchange Interactions with Similar Bond Angles in a Triangular “CuV2” Fragment“, Inorganic Chemistry, June 23, 2022, DOI: 10.1021/acs.inorgchem.2c01691. View

Saraidaridis, J. D.; Darling, R. M.; Yang, Z.; Shovlin, C.; Fortin, M.; Robb, B. H.; Waters, S. E.; Marshak, M. P., “Transport of Ligand Coordinated Iron and Chromium through Cation-Exchange Membranes“, Journal of the Electrochemical Society, June 21, 2022, DOI: 10.1149/1945-7111/ac7782. View

Jacquemond, R. R.; Wan, C. T. C.; Chiang, Y. M.; Borneman, Z.; Brushett, F. R.; Nijmeijer, K.; Forner-Cuenca, A., “Microstructural engineering of high-power redox flow battery electrodes via non-solvent induced phase separation“, Cell Reports Physical Science, June 21, 2022, DOI: 10.1016/j.xcrp.2022.100943. View

Pan, M. S.; Su, L.; Eiler, S. L.; Jing, L. W.; Badel, A. F.; Li, Z.; Brushett, F. R.; Chiang, Y. M., “Electrochemical Stability and Reversibility of Aqueous Polysulfide Electrodes Cycled Beyond the Solubility Limit“, Journal of the Electrochemical Society, June 17, 2022, DOI: 10.1149/1945-7111/ac7669. View

Bheemireddy, S. R.; Li, Z.; Zhang, J.; Agarwal, G.; Robertson, L. A.; Shkrob, I. A.; Assary, R. S.; Zhang, Z.; Wei, X.; Cheng, L.; Zhang, L., “Fluorination Enables Simultaneous Improvements of a Dialkoxybenzene-Based Redoxmer for Nonaqueous Redox Flow Batteries“, ACS Applied Materials & Interfaces, June 16, 2022, DOI: 10.1021/acsami.2c04926. View

Hahn, N. T.; McClary, S. A.; Landers, A. T.; Zavadil, K. R., “Efficacy of Stabilizing Calcium Battery Electrolytes through Salt-Directed Coordination Change“, Journal of Physical Chemistry C, June 14, 2022, DOI: 10.1021/acs.jpcc.2c02587. View

Antonio, E. N.; Toney, M. F., “Quantifying electrochemical processes in batteries and beyond“, Energy & Environmental Materials, June 10, 2022, DOI: 10.1002/eem2.12452. View

Ma, L.; Vatamanu, J.; Hahn, N. T.; Pollard, T. P.; Borodin, O.; Petkov, V.; Schroeder, M. A.; Ren, Y.; Ding, M. S.; Luo, C.; Allen, J. L.; Wang, C.; Xu, K., “Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry“, Proceedings of the National Academy of Sciences of the United States of America, June 08, 2022, DOI: 10.1073/pnas.2121138119. View

Henderson, W. A.; Helm, M. L.; Seo, D. M.; Trulove, P. C.; De Long, H. C.; Borodin, O., “Electrolyte Solvation and Ionic Association: Reassessing Raman Spectroscopic Studies of Ion Coordination for LiTFS“, Journal of the Electrochemical Society, June 08, 2022, DOI: 10.1149/1945-7111/ac71d4. View

Xu, K., “Navigating the minefield of battery literature“, Communications Materials, May 18, 2022, DOI: 10.1038/s43246-022-00251-5. View

Li, C.; Shyamsunder, A.; Hoane, A. G.; Long, D. M.; Kwok, C. Y.; Kotula, P. G.; Zavadil, K. R.; Gewirth, A. A.; Nazar, L. F., “Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry“, Joule, May 18, 2022, DOI: 10.1016/j.joule.2022.04.017. View

Ho, J. S.; Zhu, Z.; Stallworth, P.; Greenbaum, S. G.; Zhang, S. S.; Xu, K., “Quantifying Lithium Ion Exchange in Solid Electrolyte Interphase (SEI) on Graphite Anode Surfaces“, Inorganics, May 17, 2022, DOI: 10.3390/inorganics10050064. View

Halat, D. M.; Fang, C.; Hickson, D; Mistry, A.; Reimer, J. A.; Balsara, N. P.; Wang, R., “Electric-Field-Induced Spatially Dynamic Heterogeneity of Solvent Motion and Cation Transference in Electrolytes“, Physical Review Letters, May 13, 2022, DOI: 10.1103/PhysRevLett.128.198002. View

Tan, S.; Shadike, Z.; Li, J.; Wang, X.; Yang, Y.; Lin, R.; Cresce, A.; Hu, J.; Hunt, A.; Waluyo, I.; Ma, L.; Monaco, F.; Cloetens, P.; Xiao, J.; Liu, Y.; Yang, X. Q.; Xu, K.; Hu, E., “Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V“, Nature Energy, May 09, 2022, DOI: 10.1038/s41560-022-01020-x. View

Hou, X.; Pollard, T. P.; He, X.; Du, L.; Ju, X.; Zhao, W.; Li, M.; Wang, J.; Paillard, E.; Lin, H.; Sun, J.; Xu, K.; Borodin, O.; Winter, M.; Li, J., ““Water-in-Eutectogel” Electrolytes for Quasi-Solid-State Aqueous Lithium-Ion Batteries”, Advanced Energy Materials, May 06, 2022, DOI: 10.1002/aenm.202200401. View

Li, Z.; Fang, X.; Cheng, L.; Wei, X.; Zhang, L., “Techno-economic analysis of non-aqueous hybrid redox flow batteries“, Journal of Power Sources, April 28, 2022, DOI: 10.1016/j.jpowsour.2022.231493. View

Dereka, B.; Lewis, N. H. C.; Zhang, Y.; Hahn, N. T.; Keim, J. H.; Snyder, S. A.; Maginn, E. J.; Tokmakoff, A., “Exchange-Mediated Transport in Battery Electrolytes: Ultrafast or Ultraslow?“, Journal of the American Chemical Society, April 26, 2022, DOI: 10.1021/jacs.2c00154. View

Pastel, G. R.; Chen, Y.; Pollard, T. P.; Schroeder, M. A.; Bowden, M. E.; Zheng, A.; Hahn, N. T.; Ma, L.; Murugesan, V.; Ho, J.; Garaga, M.; Borodin, O.; Mueller, K.; Greenbaum, S.; Xu, K., “A sobering examination of the feasibility of aqueous aluminum batteries“, Energy & Environmental Science, April 23, 2022, DOI: 10.1039/d2ee00134a. View

Smith, J. G.; Siegel, D. J., “Ion Migration Mechanisms in the Sodium Sulfide Solid Electrolyte Na3–xSb1–xWxS4“, Chemistry of Materials, April 22, 2022, DOI: 10.1021/acs.chemmater.2c00526. View

Antonio, E. N.; Toney, M. F., “Why it is important to determine and report the impact of probe radiation“, Joule, April 20, 2022, DOI: 10.1016/j.joule.2022.03.011. View

Modak, S.; Valle, J.; Tseng, K. T.; Sakamoto, J.; Kwabi, D. G., “Correlating Stability and Performance of NaSICON Membranes for Aqueous Redox Flow Batteries“, ACS Applied Materials & Interfaces, April 20, 2022, DOI: 10.1021/acsami.2c00266. View

González, M. A.; Akiba, H.; Borodin, O.; Cuello, G. J.; Hennet, L.; Kohara, S.; Maginn, E. J.; Mangin-Thro, L.; Yamamuro, O.; Zhang, Y.; Price, D. L.; Saboungi, M. L., “Structure of water-in-salt and water-in-bisalt electrolytes“, Physical Chemistry Chemical Physics, April 15, 2022, DOI: 10.1039/d2cp00537a. View

Mistry, A.; Grundy, L. S.; Halat, D. M.; Newman, J.; Balsara, N. P.; Srinivasan, V., “Effect of Solvent Motion on Ion Transport in Electrolytes“, Journal of the Electrochemical Society, April 14, 2022, DOI: 10.1149/1945-7111/ac6329. View

Ma, L.; Pollard, T. P.; Zhang, Y.; Schroeder, M. A.; Ren, X.; Han, K. S.; Ding, M. S.; Cresce, A. V.; Atwater, T. B.; Mars, J.; Cao, L.; Steinrück, H. G.; Mueller, K. T.; Toney, M. F.; Hourwitz, M.; Fourkas, J. T.; Maginn, E. J.; Wang, C.; Borodin, O.; Xu, K., “Ammonium enables reversible aqueous Zn battery chemistries by tailoring the interphase“, One Earth, April 15, 2022, DOI: 10.1016/j.oneear.2022.03.012. View

Kwon, B. J.; Yin, L.; Roy, I.; Leon, N. J.; Kumar, K.; Kim, J. J.; Han, J.; Gim, J.; Liao, C.; Lapidus, S. H.; Cabana, J.; Key, B., “Facile Electrochemical Mg-Ion Transport in a Defect-Free Spinel Oxide“, Chemistry of Materials, April 07, 2022, DOI: 10.1021/acs.chemmater.2c00237. View

Yang, J.; Rodrigues, M. T. F.; Yu, Z.; Son, S. B.; Liu, K.; Dietz-Rago, N. L.; Cheng, L.; Zhang, Z.; Abraham, D.; Liao, C., “Design of a Scavenging Pyrrole Additive for High Voltage Lithium-Ion Batteries“, Journal of the Electrochemical Society, April 06, 2022, DOI: 10.1149/1945-7111/ac613f. View

Hoffman, Z. J.; Ho, A. S.; Chakraborty, S.; Balsara, N. P., “Limiting Current Density in Single-Ion-Conducting and Conventional Block Copolymer Electrolytes“, Journal of the Electrochemical Society, April 04, 2022, DOI: 10.1149/1945-7111/ac613b. View

Neyhouse, B. J.; Brushett, F. R., “From the Synthesis Vial to the Full Cell: Electrochemical Methods for Characterizing Active Materials for Redox Flow Batteries“, Encyclopedia of Energy Storage (Book Chapter), March 30, 2022, DOI: 10.1016/B978-0-12-819723-3.00058-5. View

Kim, D.; Sanford, M. S.; Vaid, T. P.; McNeil, A. J., “A Nonaqueous Redox-Matched Flow Battery with Charge Storage in Insoluble Polymer Beads“, Chemistry – A European Journal, March 25, 2022, DOI: 10.1002/chem.202200149. View

Shalini, S.; Matzger, A. J., “Ethylene oxide functionalization enhances the ionic conductivity of a MOF“, Chemical Communications, March 25, 2022, DOI: 10.1039/d2cc01286c. View

Tenny, K. M.; Greco, K. V.; van der Heijden, M.; Pini, T.; Mularczyk, A.; Vasile, A. P.; Eller, J.; Forner-Cuenca, A.; Chiang, Y. M.; Brushett, F. R., “A Comparative Study of Compressive Effects on the Morphology and Performance of Carbon Paper and Cloth Electrodes in Redox Flow Batteries“, Energy Technology, March 25, 2022, DOI: 10.1002/ente.202101162. View

Spotte-Smith, E. W. C.; Kam, R. L.; Barter, D.; Xie, X.; Hou, T.; Dwaraknath, S.; Blau, S. M.; Persson, K. A., “Toward a Mechanistic Model of Solid–Electrolyte Interphase Formation and Evolution in Lithium-Ion Batteries“, ACS Energy Letters, March 22, 2022, DOI: 10.1021/acsenergylett.2c00517. View

Hu, J. Z.; Jaegers, N. R.; Hahn, N. T.; Hu, W.; Han, K. S.; Chen, Y.; Sears, J. A.; Murugesan, V.; Zavadil, K. R.; Mueller, K. T., “Understanding the Solvation-Dependent Properties of Cyclic Ether Multivalent Electrolytes Using High-Field NMR and Quantum Chemistry“, JACS Au, March 21, 2022, DOI: 10.1021/jacsau.2c00046. View

Yan, Y.; Walser-Kuntz, R.; Sanford, M. S., “Targeted Optimization of Phenoxazine Redox Center for Nonaqueous Redox Flow Batteries“, ACS Materials Letters, March 21, 2022, DOI: 10.1021/acsmaterialslett.2c00050. View

Woodford, W. H.; Burger, S.; Ferrara, M.; Chiang, Y. M., “The iron-energy nexus: A new paradigm for long-duration energy storage at scale and clean steelmaking“, One Earth, March 18, 2022, DOI: 10.1016/j.oneear.2022.03.003. View

Darling, R. M.; Saraidaridis, J. D.; Shovlin, C.; Fortin, M., “The Influence of Current Density on Transport of Vanadium Acetylacetonate through a Cation-Exchange Membrane“, Journal of the Electrochemical Society, March 09, 2022, DOI: 10.1149/1945-7111/ac58cb. View

Xu, K.; Xu, W.; Zhang, S. S., “Austen Angell’s legacy in electrolyte research“, Journal of Non-Crystalline Solids: X, March 08, 2022, DOI: 10.1016/j.nocx.2022.100088. View

Alazmi, A.; Wan, C. T. C.; Costa, P. M. F. J.; Brushett, F. R., “Exploration of reduced graphene oxide microparticles as electrocatalytic materials in vanadium redox flow batteries“, Journal of Energy Storage, March 08, 2022, DOI: 10.1016/j.est.2022.104192. View

Zasada, L. B.; Guio, L.; Kamin, A. A.; Dhakal, D.; Monahan, M.; Seidler, G. T.; Luscombe, C. K.; Xiao, D. J., “Conjugated Metal–Organic Macrocycles: Synthesis, Characterization, and Electrical Conductivity“, Journal of the American Chemical Society, March 07, 2022, DOI: 10.1021/jacs.1c12596. View

Qian, H.; Counihan, M. J.; Doan, H. A.; Ibrahim, N. A.; Danis, A. S.; Setwipatanachai, W.; Purwanto, N. S.; Rodriguez-Lopez, J.; Assary, R. S.; Moore, J. S., “Mesolytic cleavage of homobenzylic ethers for programmable end-of-life function in redoxmers“, Journal of Materials Chemistry A, March 07, 2022, DOI: 10.1039/d1ta10291e. View

Qian, K.; Yu, Z.; Liu, Y.; Gosztola, D. J.; Winans, R. E.; Cheng, L.; Li, T., “Understanding fluorine-free electrolytes via small-angle X-ray scattering“, Journal of Energy Chemistry, March 05, 2022, DOI: 10.1016/j.jechem.2022.02.043. View

Kim, S.; Yin, L.; Bak, S. M.; Fister, T. T.; Park, H.; Parajuli, P.; Gim, J.; Yang, Z.; Klie, R. F.; Zapol, P.; Du, Y.; Lapidus, S. H.; Vaughey, J. T., “Investigation of Ca Insertion into α-MoO3 Nanoparticles for High Capacity Ca-Ion Cathodes“, Nano Energy, March 02, 2022, DOI: 10.1021/acs.nanolett.1c04157. View

Nurnberg, P.; Atik, J.; Borodin, O.; Winter, M.; Paillard, E.; Schonhoff, M., “Superionicity in Ionic-Liquid-Based Electrolytes Induced by Positive Ion–Ion Correlations“, Journal of the American Chemical Society, March 02, 2022, DOI: 10.1021/jacs.2c00818. View

Atwi, R.; Chen, Y.; Han, K. S.; Mueller, K. T.; Murugesan, V.; Rajput, N. N., “An automated framework for high-throughput predictions of NMR chemical shifts within liquid solutions“, Nature Computational Science, February 28, 2022, DOI: 10.1038/s43588-022-00200-9. View

Reber, D.; Borodin, O.; Becker, M.; Rentsch, D.; Thienenkamp, J. H.; Grissa, R.; Zhao, W.; Aribia, A.; Brunklaus, G.; Battaglia, C.; Kuhnel, R. S., “Water/Ionic Liquid/Succinonitrile Hybrid Electrolytes for Aqueous Batteries“, Advanced Functional Materials, February 27, 2022, DOI: 10.1002/adfm.202112138. View

Thornburg, E. S.; Haasch, R. T.; Gewirth, A. A., “Tailoring the Lithium Solid Electrolyte Interphase for Highly Concentrated Electrolytes with Direct Exposure to Halogenated Solvents“, ACS Applied Energy Materials, February 21, 2022, DOI: 10.1021/acsaem.1c03336. View

Schreiber, E.; Garwick, R. E.; Baran, M. J.; Baird, M. A.; Helms, B. A.; Matson, E. M., “Molecular Engineering of Polyoxovanadate-Alkoxide Clusters and Microporous Polymer Membranes to Prevent Crossover in Redox-Flow Batteries“, ACS Applied Materials & Interfaces, February 17, 2022, DOI: 10.1021/acsami.1c23205. View

Yu, H.; Li, J.; Li, S.; Liu, Y.; Jackson, N. E.; Moore, J. S.; Schroeder, C. M., “Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes“, Journal of the American Chemical Society, February 11, 2022, DOI: 10.1021/jacs.1c12741. View

Choo, Y.; Snyder, R. L.; Shah, N. J.; Abel, B. A.; Coates, G. W.; Balsara, N. P., “Complete Electrochemical Characterization and Limiting Current of Polyacetal Electrolytes“, Journal of the Electrochemical Society, February 11, 2022, DOI: 10.1149/1945-7111/ac4f22. View

Peters, B. L.; Yu, Z.; Redfern, P. C.; Curtiss, L. A.; Cheng, L., “Effects of Salt Aggregation in Perfluoroether Electrolytes“, Journal of the Electrochemical Society, February 01, 2022, DOI: 10.1149/1945-7111/ac4c7a. View

Kim, K.; Li, Y.; Tsai, P. C.; Wang, F.; Son, S. B.; Chiang, Y. M.; Siegel, D. J., “Exploring the Synthesis of Alkali Metal Anti-perovskites“, Chemistry of Materials, January 27, 2022, DOI: 10.1021/acs.chemmater.1c02150. View

Zhang, Z.; Nazar, L. F., “Exploiting the paddle-wheel mechanism for the design of fast ion conductors“, Nature Reviews Materials, January 18, 2022, DOI: 10.1038/s41578-021-00401-0. View

Leon, N. J., He, M.; Liao, C., “Solvation, Rational Design, and Interfaces: Development of Divalent Electrolytes“, Frontiers in Energy Research, January 05, 2022, DOI: 10.3389/fenrg.2021.802398. View

Perry, M. L.; Rodby, K. E.; Brushett, F. R., “Untapped Potential: The Need and Opportunity for High-Voltage Aqueous Redox Flow Batteries“, ACS Energy Letters, January 14, 2022, DOI: 10.1021/acsenergylett.1c02225. View

Wen, M.; Blau, S. M.; Xie, X.; Dwaraknath, S.; Persson, K. A., “Improving machine learning performance on small chemical reaction data with unsupervised contrastive pretraining“, Chemical Science, January 11, 2022, DOI: 10.1039/d1sc06515g. View

Kwon, B. J.; Yin, L.; Bartel, C. J.; Kumar, K.; Parajuli, P.; Gim, J.; Kim, S.; Wu, Y. A.; Klie, R. F.; Lapidus, S. H.; Key, B.; Ceder, G.; Cabana, J., “Intercalation of Ca into a Highly Defective Manganese Oxide at Room Temperature“, Chemistry of Materials, January 10, 2022, DOI: 10.1021/acs.chemmater.1c03803 View

Fang, X.; Li, Z.; Zhao, Y.; Yue, D.; Zhang, L.; Wei, X., “Multielectron Organic Redoxmers for Energy-Dense Redox Flow Batteries“, ACS Materials Letters, January 06, 2022, DOI: 10.1021/acsmaterialslett.1c00668. View

Li, C.; Kingsbury, R.; Zhou, L.; Shyamsunder, A.; Persson, K. A.; Nazar, L. F., “Tuning the Solvation Structure in Aqueous Zinc Batteries to Maximize Zn-Ion Intercalation and Optimize Dendrite-Free Zinc Plating“, ACS Energy Letters, January 03, 2022, DOI: 10.1021/acsenergylett.1c02514. View

Zhou, L.; Zuo, T.T.; Kwok, C. Y.; Kim, S. Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L. F., “High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes“, Nature Energy, January 03, 2022, DOI: 10.1038/s41560-021-00952-0. View

Wi, S.; Shutthanandan, V.; Sivakumar, B. M.; Thevuthasan, S.; Prabhakaran, V.; Roy, S.; Karakoti, A.; Murugesan, V., “In situ x-ray photoelectron spectroscopy analysis of electrochemical interfaces in battery: Recent advances and remaining challenges“, Journal of Vacuum Science & Technology A, January 03, 2022, DOI: 10.1116/6.0001460. View

Latest Updates

See All