Published Papers – 2021

Yu, H.; Li, J.; Li, S.; Liu, Y.; Jackson, N. E.; Moore, J. S.; Schroeder, C. M., “Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes“, Journal of the American Chemical Society, February 11, 2022, DOI: 10.1021/jacs.1c12741. View

Choo, Y.; Snyder, R. L.; Shah, N. J.; Abel, B. A.; Coates, G. W.; Balsara, N. P., “Complete Electrochemical Characterization and Limiting Current of Polyacetal Electrolytes“, Journal of the Electrochemical Society, February 11, 2022, DOI: 10.1149/1945-7111/ac4f22. View

Wen, M.; Blau, S. M.; Xie, X.; Dwaraknath, S.; Persson, K. A., “Improving machine learning performance on small chemical reaction data with unsupervised contrastive pretraining“, Chemical Science, January 11, 2022, DOI: 10.1039/d1sc06515g. View

Ma, Z.; Chen, J.; Vatamanu, J.; Borodin, O.; Bedrov, D.; Zhou, X.; Zhang, W.; Li, W.; Xu, K.; Xing, L., “Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery“, Energy Storage Materials, December 29, 2021, DOI: 10.1016/j.ensm.2021.12.045. View

Yu, Z.; Balsara, N. P.; Borodin, O.; Gewirth, A. A.; Hahn, N. T.; Maginn, E. J.; Persson, K. A.; Srinivasan, V.; Toney, M. F.; Xu, K.; Zavadil, K. R.; Curtiss, L. A.; Cheng, L., “Beyond Local Solvation Structure: Nanometric Aggregates in Battery Electrolytes and Their Effect on Electrolyte Properties“, ACS Energy Letters, December 29, 2021, DOI: 10.1021/acsenergylett.1c02391. View

Dereka, B.; Lewis, N. H. C.; Keim, J. H.; Snyder, S. A.; Tokmakoff, A., “Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes“, Journal of Physical Chemistry B, December 28, 2021, DOI: 10.1021/acs.jpcb.1c09572. View

Khudiyev, T.; Grena, B.; Loke, G.; Hou, G.; Jang, H.; Lee, J.; Noel, G. H.; Alain, J.; Joannopoulos, J.; Xu, K.; Li, J.; Fink, Y.; Lee, J. T., “Thermally drawn rechargeable battery fiber enables pervasive power“, Materials Today, December 20, 2021, DOI: 10.1016/j.mattod.2021.11.020. View

Wan, C. T. C.; Greco, K. V.; Alazmi, A.; Darling, R. M.; Chiang, Y. M.; Brushett, F. R., “Methods—A Potential–Dependent Thiele Modulus to Quantify the Effectiveness of Porous Electrocatalysts“, Journal of the Electrochemical Society, December 18, 2021, DOI: 10.1149/1945-7111/ac34ce. View

Liu, X.; Lee, S. C.; Seifer, S.; Winans, R. E.; Cheng, L.; Zhang, Y.; Li, T., “Insight into the nanostructure of “water in salt” solutions: a SAXS/WAXS study on imide-based lithium salts aqueous solutions“, Energy Storage Materials, December 17, 2021, DOI: 10.1016/j.ensm.2021.12.016. View

Hahn, N. T.; Self, J.; Driscoll, D. M.; Dandu, N.; Han, K. S.; Murugesan, V.; Mueller, K. T.; Curtiss, L. A.; Balasubramanian, M.; Persson, K. A.; Zavadil, K. R., “Concentration-dependent ion correlations impact the electrochemical behavior of calcium battery electrolytes“, Physical Chemistry Chemical Physics, December 15, 2021, DOI: 10.1039/d1cp04370f. View

Gao, K. W.; Yu, X.; Darling, R. M.; Newman, J.; Balsara, N. P., “Increased Donnan exclusion in charged polymer networks at high salt concentrations“, Soft Matter, December 10, 2021, DOI: 10.1039/d1sm01511g. View

Wang, H.; Ryu, J.; McClary, S. A.; Long, D. M.; Zhou, M.; Engelhard, M. H.; Zou, L.; Quinn, J.; Kotula, P.; Han, K. S.; Jia, H.; Wang, C.; Assary, R. S.; Zavadil, K. R.; Murugesan, V.; Mueller, K. T.; Shao, Y., “An Electrochemically Activated Nanofilm for Sustainable Mg Anode with Fast Charge Transfer Kinetics“, Journal of the Electrochemical Society, December 10, 2021, DOI: 10.1149/1945-7111/ac3d2c. View

Grocke, G. L.; Zhang, H.; Kopfinger, S. S.; Patel, S. N.; Rowan, S. J., “Synthesis and Characterization of Redox-Responsive Disulfide Cross-Linked Polymer Particles for Energy Storage Applications“, ACS Macro Letters, December 09, 2021, DOI: 10.1021/acsmacrolett.1c00682. View

Cheng, Z.; Tenny, K. M.; Pizzolato, A.; Forner-Cuenca, A.; Verda, V.; Chiang, Y. M.; Brushett, F. R.; Behrou, R., “A Generalized Reduced Fluid Dynamic Model for Flow Fields and Electrodes in Redox Flow Batteries“, AIChE Journal, December 07, 2021, DOI: 10.1002/aic.17540. View

Sarbapalli, D.; Mishra, A.; Hatfield, K. O.; Gossage, Z. T.; Rodriguez-Lopez, J., “Scanning electrochemical microscopy: a versatile tool for inspecting the reactivity of battery electrodes”, Batteries: Materials principles and characterization methods (Book Chapter), December 01, 2021, DOI: 10.1088/978-0-7503-2682-7ch9. View

Shi, B.; Liu, K.; Lee, E.; Liao, C., “Differential electrochemical mass spectrometry (DEMS) for batteries”, Batteries: Materials principles and characterization methods (Book Chapter), December 01, 2021, DOI: 10.1088/978-0-7503-2682-7ch5. View

Liao, C., “Fundamentals of rechargeable lithium ion and beyond lithium ion batteries”, Batteries: Materials principles and characterization methods (Book Chapter), December 01, 2021, DOI: 10.1088/978-0-7503-2682-7ch1. View

Hou, X.; Pollard, T. P.; Zhao, W.; He, X.; Ju, X.; Wang, J.; Du, L.; Paillard, E.; Lin, H.; Xu, K.; Borodin, O.; Winter, M.; Li, J., “Simultaneous Formation of Interphases on both Positive and Negative Electrodes in High-Voltage Aqueous Lithium-Ion Batteries“, Small, December 01, 2021, DOI: 10.1002/smll.202104986. View

Neyhouse, B. J.; Tenny, K. M.; Chiang, Y. M.; Brushett, F. R., “Microelectrode-Based Sensor for Measuring Operando Active Species Concentrations in Redox Flow Cells“, ACS Applied Energy Materials, November 30, 2021, DOI: 10.1021/acsaem.1c02580. View

Zhang, Y.; Maginn, E. J., “Water-In-Salt LiTFSI Aqueous Electrolytes (2): Transport Properties and Li+ Dynamics Based on Molecular Dynamics Simulations“, Journal of Physical Chemistry B, November 23, 2021, DOI: 10.1021/acs.jpcb.1c07581. View

Ma, L.; Lee, J. Z.; Pollard, T. P.; Schroeder, M. A.; Limpert, M. A.; Craven, B.; Fess, S.; Rustomji, C. S.; Wang, C.; Borodin, O.; Xu, K., “High-Efficiency Zinc-Metal Anode Enabled by Liquefied Gas Electrolytes“, ACS Energy Letters, November 19, 2021, DOI: 10.1021/acsenergylett.1c02084. View

Greco, K. V.; Bonesteel, J. K.; Chanut, N.; Wan, C. T. C.; Chiang. Y. M.; Brushett, F. R., “Limited Accessibility to Surface Area Generated by Thermal Pretreatment of Electrodes Reduces Its Impact on Redox Flow Battery Performance“, ACS Applied Energy Materials, November 17, 2021, DOI: 10.1021/acsaem.1c01980. View

Zhang, J.; Shkrob, I. A.; Robertson, L. A.; Zhang, L., “Multiple charging and chemical stability of tripodal catholyte redoxmers“, Chemical Physics Letters, November 12, 2021, DOI: 10.1016/j.cplett.2021.139212. View

Han, K. S.; Bazak, J. D.; Chen, Y.; Graham, T. R.; Washton, N. M.; Hu, J. Z.; Murugesan, V.; Mueller, K. T., “Pulsed Field Gradient Nuclear Magnetic Resonance and Diffusion Analysis in Battery Research“, Chemistry of Materials, November 11, 2021, DOI: 10.1021/acs.chemmater.1c02891. View

Qian, K.; Seifert, S.; Winans, R. E.; Li, T., “Understanding Solvation Behavior of the Saturated Electrolytes with Small/Wide-Angle X-ray Scattering and Raman Spectroscopy“, Energy & Fuels, November 11, 2021, DOI: 10.1021/acs.energyfuels.1c03328. View

Xiang, Y.; Tao, M.; Zhong, G.; Liang, Z.; Zheng, G.; Huang, X.; Liu, X.; Jin, Y.; Xu, N.; Armand, M.; Zhang, J. G.; Xu, K.; Fu, R.; Yang, Y., “Quantitatively analyzing the failure processes of rechargeable Li metal batteries“, Science Advances, November 10, 2021, DOI: 10.1126/sciadv.abj3423. View

Simon, B. A.; Gayon-Lomardo, A.; Pino-Muñoz, C. A.; Wood, C. E.; Tenny, K. M.; Greco, K. V.; Cooper, S. J.; Forner-Cuenca, A.; Brushett, F. R.; Kucernak, A. R.; Brandon, N. P., “Combining electrochemical and imaging analyses to understand the effect of electrode microstructure and electrolyte properties on redox flow batteries“, Applied Energy, November 09, 2021, DOI: 10.1016/j.apenergy.2021.117678. View

Chen, Y.; Atwi, R.; Han, K. S.; Ryu, J.; Washton, N. M.; Hu, J. Z.; Rajput, N. N.; Mueller, K. T.; Murugesan, V., “Role of a Multivalent Ion–Solvent Interaction on Restricted Mg2+ Diffusion in Dimethoxyethane Electrolytes“, Journal of Physical Chemistry B, November 08, 2021, DOI: 10.1021/acs.jpcb.1c08729. View

Park, H.; Bartel, C. J.; Ceder, G.; Zapol, P., “Layered Transition Metal Oxides as Ca Intercalation Cathodes: A Systematic First-Principles Evaluation“, Advanced Energy Materials, November 06, 2021, DOI: 10.1002/aenm.202101698. View

Gandomi, Y. A.; Krasnikova, I. V.; Akhmetov, N. O.; Ovsyannikov, N. A.; Pogosova, M. A.; Matteucci, N. J.; Mallia, C. T.; Neyhouse, B. J.; Fenton, A. M.; Brushett, F. R.; Stevenson, K. J., “Synthesis and Characterization of Lithium-Conducting Composite Polymer–Ceramic Membranes for Use in Nonaqueous Redox Flow Batteries“, ACS Applied Materials & Interfaces, November 04, 2021, DOI: 10.1021/acsami.1c13759. View

Ding, F.; Charles, N.; Harada, J. K.; Malliakas, C. D.; Zhang, C.; dos Reis, R.; Griffith, K. J.; Nisbet, M. L.; Zhang, W.; Halasyamani, P. S.; Dravid, V. P.; Rondinelli, J. M.; Poeppelmeier, K. R., “Perovskite-like K3TiOF5 Exhibits (3 + 1)-Dimensional Commensurate Structure Induced by Octahedrally Coordinated Potassium Ions“, Journal of the Electrochemical Society, November 03, 2021, DOI: 10.1021/jacs.1c05704. View

Ewoldt, R. H.; Saengow, C., “Designing Complex Fluids“, Annual Review of Fluid Mechanics, November 01, 2021, DOI: 10.1146/annurev-fluid-031821-104935. View

Wen, X.; Yu, Z.; Zhao, Y.; Zhang, J.; Qiao, R.; Cheng, L.; Ban, C.; Guo. J., “Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure“, ACS Applied Materials & Interfaces, November 01, 2021, DOI: 10.1021/acsami.1c10446. View

Ho, J. S.; Borodin, O. A.; Ding, M. S.; Ma, L.; Schroeder, M. A.; Pastel, G. R.; Xu, K., “Understanding Lithium-ion Transport in Sulfolane- and Tetraglyme-based Electrolytes using Very Low Frequency Impedance Spectroscopy“, Energy & Environmental Materials, October 31, 2021, DOI: 10.1002/eem2.12302. View

Yan, Y.; Vogt, D. B.; Vaid, T. P.; Sigman, M. S.; Sanford, M., “Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries“, Angewandte Chemie-International Edition, October 20, 2021, DOI: 10.1002/anie.202111939. View

Yang, C.; Wu, Q.; Xie, W.; Zhang, X.; Brozena, A.; Zheng, J.; Garaga, M. N.; Ko, B. H.; Mao, Y.; He, S.; Gao, Y.; Wang, P.; Tyagi, M.; Jiao, F.; Briber, R.; Albertus, P.; Wang, C.; Greenbaum, S.; Hu, Y. Y.; Isogai, A.; Winter, M.; Xu, K.; Qi, Y.; Hu, L., “Copper-coordinated cellulose ion conductors for solid-state batteries“, Nature, October 20, 2021, DOI: 10.1038/s41586-021-03885-6. View

Mistry, A.; Srinivasan, V., “Do we need accurate understanding of transport in electrolytes?“, Joule, October 19, 2021, DOI: 10.1016/j.joule.2021.10.007. View

Li, M.; Odom, S. A.; Pancoast, A. R.; Robertson, L. A.; Vaid, T. P.; Agarwal, G.; Doan, H. A.; Wang, Y.; Suduwella, T. M.; Bheemireddy, S. R.; Ewoldt, R. H.; Assary, R. S.; Zhang, L.; Sigman, M. S.; Minteer, S. D., “Experimental Protocols for Studying Organic Non-aqueous Redox Flow Batteries“, ACS Energy Letters, October 18, 2021, DOI: 10.1021/acsenergylett.1c01675. View 

Silcox, B.; Zhang, J.; Tung, S. O.; Shkrob, I. A.; Zhang, L.; Thompson, L. T., “Cross-Platform Classifier of Chemical Stability for Charged Redoxmers“, ACS Materials Letters, October 18, 2021, DOI: 10.1021/acsmaterialslett.1c00424. View

Agarwal, G.; Doan, H. A.; Robertson, L. A.; Zhang, L.; Assary, R. S., “Discovery of Energy Storage Molecular Materials Using Quantum Chemistry-Guided Multiobjective Bayesian Optimization“, Chemistry of Materials, October 14, 2021, DOI: 10.1021/acs.chemmater.1c02040. View

Ding, M. S.; Xu, K., “A Thermoconductometric Study of Transient Behavior of Liquid Electrolytes at Phase Transition“, Journal of Physical Chemistry C, October 13, 2021, DOI: 10.1021/acs.jpcc.1c07057. View

Yue, J.; Zhang, J.; Tong, Y.; Chen, M.; Liu, L.; Jiang, L.; Lv, T.; Hu, Y. S.; Li, H.; Huang, X.; Gu, L.; Feng, G.; Xu, K.; Suo, L.; Chen, L., “Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime“, Nature Chemistry, October 11, 2021, DOI: 10.1038/s41557-021-00787-y. View

Hou, S.; Ji, X.; Gaskell, K.; Wang, P. F.; Wang, L.; Xu, J.; Sun, R.; Borodin, O.; Wang, C., “Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics“, Science, October 07, 2021, DOI: 10.1126/science.abg3954. View

Li, M.; Agarwal, G.; Shkrob, I. A.; VanderLinden, R. T.; Case, J.; Prater, M.; Rhodes, Z.; Assary, R. S.; Minteer, S. D., “Critical Role of Structural Order in Bipolar Redox-Active Molecules for Organic Redox Flow Batteries“, Journal of Materials Chemistry A, October 06, 2021, DOI: 10.1039/d1ta04821j. View

Hong, Z.; Ward, L.; Chard, K.; Blaiszik, B.; Foster, I., “Challenges and Advances in Information Extraction from Scientific Literature: a Review“, JOM, October 05, 2021, DOI: 10.1007/s11837-021-04902-9. View

Li, J.; Pudar, S.; Yu, H.; Li, S.; Moore, J. S.; Rodriguez-Lopez, J.; Jackson, N. E.; Schroeder, C. M., “Reversible Switching of Molecular Conductance in Viologens is Controlled by the Electrochemical Environment“, Journal of Physical Chemistry C, October 05, 2021, DOI: 10.1021/acs.jpcc.1c06942. View

Wang, F.; Blanc, L. E.; Li, Q.; Faraone, A.; Ji, X.; Chen-Mayer, H. H.; Paul, R. L.; Dura, J. A.; Hu, E.; Xu, K.; Nazar, L. F.; Wang, C., “Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries“, Advanced Energy Materials, October 04, 2021, DOI: 10.1002/aenm.202102016. View

Flynn, S.; Wang, Y.; Griffith, K. J.; Poeppelmeier, K. R., “The crystal structure of LiSc2SbO6“, Journal of Solid State Chemistry, September 25, 2021, DOI: 10.1016/j.jssc.2021.122615. View

Hankins, K.; Prabhakaran, V.; Wi, S.; Sutthanandan, V.; Johnson, G. E.; Roy, S.; Wang, H.; Shao, Y.; Thevuthasan, S.; Balbuena, P. B.; Mueller, K. T.; Murugesan, V., “Role of Polysulfide Anions in Solid-Electrolyte Interphase Formation at the Lithium Metal Surface in Li–S Batteries“, Journal of Physical Chemistry Letters, September 22, 2021, DOI: 10.1021/acs.jpclett.1c01930. View

Li, S.; Yu, H.; Li, J.; Angello, N.; Jira, E. R.; Li, B.; Burke, M. D.; Moore, J. S.; Schroeder, C. M., “Transition between Nonresonant and Resonant Charge Transport in Molecular Junctions“, Nano Letters, September 16, 2021, DOI: 10.1021/acs.nanolett.1c02915. View

Cao, C.; Pollard, T. P.; Borodin, O.; Mars, J. E.; Tsao, Y.; Lukatskaya, M. R.; Kasse, R. M.; Schroeder, M. A.; Xu, K.; Toney, M. F.; Steinruck, H. G., “Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase“, Chemistry of Materials, September 14, 2021, DOI: 10.1021/acs.chemmater.1c01744. View

Sundararaman, S.; Halat, D. M.; Choo, Y.; Snyder, R. L.; Abel, B. A.; Coates, G. W.; Reimer, J. A.; Balsara, N. P.; Prendergast, D., “Exploring the Ion Solvation Environments in Solid-State Polymer Electrolytes through Free-Energy Sampling“, Macromolecules, September 14, 2021, DOI: 10.1021/acs.macromol.1c01417. View

Hoffman, Z. J.; Shah, D. B.; Balsara, N. P., “Temperature and concentration dependence of the ionic transport properties of poly(ethylene oxide) electrolytes“, Solid State Ionics, September 13, 2021, DOI: 10.1016/j.ssi.2021.115751. View

Zhang, Y.; Wan, G.; Lewis, N. H. C.; Mars, J.; Bone, S. E.; Steinruck, H. G.; Lukatskaya, M. R.; Weadock, N. J.; Bajdich, M.; Borodin, O.; Tokmakoff, A.; Toney, M. F.; Maginn, E. J., “Water or Anion? Uncovering the Zn2+ Solvation Environment in Mixed Zn(TFSI)2 and LiTFSI Water-in-Salt Electrolytes“, ACS Energy Letters, September 08, 2021, DOI: 10.1021/acsenergylett.1c01624. View

Hancock, J. C.; Griffith, K. J.; Choi, Y.; Bartel, C. J.; Lapidus, S. H.; Vaughey, J. T.; Ceder, G.; Poeppelmeier, K. R., “Expanding the Ambient-Pressure Phase Space of CaFe2O4-Type Sodium Postspinel Host–Guest Compounds“, ACS Organic & Inorganic, September 01, 2021, DOI: 10.1021/acsorginorgau.1c00019. View

Özdogru, B.; Cha, Y.; Gwalani, B.; Murugesan, V.; Song, M. K.; Çapraz, O. O., “In Situ Probing Potassium-Ion Intercalation-Induced Amorphization in Crystalline Iron Phosphate Cathode Materials“, Nano Letters, September 01, 2021, DOI: 10.1021/acs.nanolett.1c02095. View

Özdogru, B.; Cha, Y.; Gwalani, B.; Murugesan, V.; Song, M. K.; Çapraz, O. O., “In Situ Probing Potassium-Ion Intercalation-Induced Amorphization in Crystalline Iron Phosphate Cathode Materials“, Nano Letters, September 01, 2021, DOI: 10.1021/acs.nanolett.1c02095. View

Galluzzo, M. D.; Grundy, L. S.; Takacs, C. J.; Cao, C.; Steinruck, H. G.; Fu, S.; Valadez, M. A. R.; Toney, M. F.; Balsara, N. P., “Orientation-Dependent Distortion of Lamellae in a Block Copolymer Electrolyte under DC Polarization“, Macromolecules, August 27, 2021, DOI: 10.1021/acs.macromol.1c01295. View

Huang, B.; Rao, R. R.; You, S.; Myint, K. H.; Song, Y.; Wang, Y.; Ding, W.; Giordano, L.; Zhang, Y.; Wang, T.; Muy, S.; Katayama, Y.; Grossman, J. C.; Willard, A. P.; Xu, K.; Jiang, Y.; Shao-Horn, Y., “Cation- and pH-Dependent Hydrogen Evolution and Oxidation Reaction Kinetics“, JACS Au, August 25, 2021, DOI: 10.1021/jacsau.1c00281. View

Abel, B. A.; Snyder, R. L.; Coates, G. W., “Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals“, Science, August 13, 2021, DOI: 10.1126/science.abh0626. View

Yan, Y.; Robinson, S. G.; Vaid, T. P.; Sigman, M. S.; Sanford, M. S., “Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents“, Journal of the American Chemical Society, August 13, 2021, DOI: 10.1021/jacs.1c07237. View

Xie, X.; Spotte-Smith, E. W. C.; Wen, M.; Patel, H. D.; Blau, S. M.; Persson, K. A., “Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network“, Journal of the American Chemical Society, August 11, 2021, DOI: 10.1021/jacs.1c05807. view

Li, J.; Hou, X.; Wang, R.; He, X.; Pollard, T. P.; Ju, X.; Du, L.; Paillard, E.; Frielinghaus, H.; Barnsley, L. C.; Borodin, O.; Xu, K.; Winter, M., “Stabilizing the solid-electrolyte interphase with polyacrylamide for high-voltage aqueous lithium-ion batteries“, Angewandte Chemie-International Edition, August 11, 2021, DOI: 10.1002/anie.202107252. View

McColl, K.; Griffith, K. J.; Dally, R. L.; Li, R.; Douglas, J. E.; Poeppelmeier, K. R.; Cora, F.; Levin, I.; Butala, M. M., “Energy storage mechanisms in vacancy-ordered Wadsley–Roth layered niobates“, Journal of Materials Chemistry A, August 11, 2021, DOI: 10.1039/d1ta02992d. View

Yang, F.; Feng, X.; Liu, Y. S.; Glans, P. A.; Guo, J., “In situ/operando soft x-ray spectroscopy of chemical interfaces in gas and liquid environments“, MRS Bulletin, August 09, 2021, DOI: 10.1557/s43577-021-00155-8. View

Aubrey, M. L.; Axelson, J. C.; Engler, K. E.; Long, J. R., “Dependence of Linker Length and Composition on Ionic Conductivity and Lithium Deposition in Single-Ion Conducting Network Polymers“, Macromolecules, August 08, 2021, DOI: 10.1021/acs.macromol.1c00911. View

Agarwal, G.; Howard, J. D.; Prabhakaran, V.; Johnson, G. E.; Murugesan, V.; Mueller, K. T.; Curtiss, L. A.; Assary, R. S., “Insights into Spontaneous Solid Electrolyte Interphase Formation at Magnesium Metal Anode Surface from Ab Initio Molecular Dynamics Simulations“, ACS Applied Materials & Interfaces, August 06, 2021, DOI: 10.1021/acsami.1c07864. View

Spotte-Smith, E. W. C.; Blau, S. M.; Xie, X.; Patel, H. D.; Wen, M.; Wood, B.; Dwaraknath, S.; Persson, K. A., “Quantum chemical calculations of lithium-ion battery electrolyte and interphase species“, Scientific Data, August 05, 2021, DOI: 10.1038/s41597-021-00986-9. View

Ringsby, A. J.; Fong, K. D.; Self, J.; Bergstrom, H. K.; McCloskey, B. D.; Persson, K. A., “Transport Phenomena in Low Temperature Lithium-Ion Battery Electrolytes“, Journal of the Electrochemical Society, August 04, 2021, DOI: 10.1149/1945-7111/ac1735. View

Özdogru, B.; Dykes, H.; Gregory, D.; Saurel, D.; Murugesan, V.; Casas-Cabanas, M.; Çapraza, Ö. Ö., “Elucidating cycling rate-dependent electrochemical strains in sodium iron phosphate cathodes for Na-ion batteries“, Journal of Power Sources, August 03, 2021, DOI: 10.1016/j.jpowsour.2021.230297. View

Schroeder, M. A.; Ma, L.; Pastel, G.; Xu, K., “The mystery and promise of multivalent metal-ion batteries“, Current Opinion in Electrochemistry, July 24, 2021, DOI: 10.1016/j.coelec.2021.100819. View

Siegel, D. J.; Nazar, L.; Chiang, Y. M.; Fang, C.; Balsara, N. P., “Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes“, Trends in Chemistry, July 23, 2021, DOI: 10.1016/j.trechm.2021.06.004. View

Valle, J. M.; Huang, C.; Tatke, D.; Wolfenstine, J.; Go, W.; Kim, Y.; Sakamoto, J., “Characterization of hot-pressed von Alpen type NASICON ceramic electrolytes“, Solid State Ionics, July 20, 2021, DOI: 10.1016/j.ssi.2021.115712. View

Blanc, L.; Bartel, C. J.; Kim, H.; Tian, Y.; Kim, H.; Miura, A.; Ceder, G.; Nazar, L., “Toward the Development of a High-Voltage Mg Cathode Using a Chromium Sulfide Host“, ACS Materials Letters, July 15, 2021, DOI: 10.1021/acsmaterialslett.1c00308. View

Loo, W. S.; Fang, C.; Balsara, N.; Wang, R., “Uncovering Local Correlations in Polymer Electrolytes by X-ray Scattering and Molecular Dynamics Simulations“, Macromolecules, July 08, 2021, DOI: 10.1021/acs.macromol.1c00995. View

Yin, L.; Kwon, B. J.; Choi, Y.; Bartel, C. J.; Yang, M.; Liao, C.; Key, B.; Ceder, G.; Lapidus, S. H., “Operando X-ray Diffraction Studies of the Mg-Ion Migration Mechanisms in Spinel Cathodes for Rechargeable Mg-Ion Batteries“, Journal of the American Chemical Society, July 08, 2021, DOI: 10.1021/jacs.1c04098. View

Ward, L.; Dandu, N.; Blaiszik, B.; Narayanan, B.; Assary, R. S.; Redfern, P. C.; Foster, I.; Curtiss, L. A., “Graph-Based Approaches for Predicting Solvation Energy in Multiple Solvents: Open Datasets and Machine Learning Models“, Journal of Physical Chemistry A, June 30, 2021, DOI: 10.1021/acs.jpca.1c01960. View

Halat, D. M.; Snyder, R. L.; Sundararaman, S.; Choo, Y.; Gao, K. W.; Hoffman, Z. J.; Abel, B. A.; Grundy, L. S.; Galluzzo, M. D.; Gordon, M. P.; Celik, H.; Urban, J. J.; Prendergast, D.; Coates, G. W.; Balsara, N. P.; Reimer, J. A., “Modifying Li+ and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion“, Chemistry of Materials, June 29, 2021, DOI: 10.1021/acs.chemmater.1c00339. View

Zhao, Y.; Zhang, J.; Agarwal, G.; Yu, Z.; Corman, R. E.; Wang, Y.; Robertson, L. A.; Shi, Z.; Doan, H. A.; Ewoldt, R. H.; Shkrob, I. A.; Assary, R. A.; Cheng, L.; Srinivasan, V.; Babinec, S. J.; Zhang, L., “TEMPO Allegro: Liquid Catholyte Redoxmers for Nonaqueous Redox Flow Batteries“, Journal of Materials Chemistry A, June 25, 2021, DOI: 10.1039/d1ta04297a. View

Attanayake, N. H.; Suduwella, T. M.; Yan, Y.; Kaur, A. P.; Liang, Z.; Sanford, M. S.; Odom, S. A., “Comparative Study of Organic Radical Cation Stability and Coulombic Efficiency for Nonaqueous Redox Flow Battery Applications“, Journal of Physical Chemistry C, June 25, 2021, DOI: 10.1021/acs.jpcc.1c00686. View

Becknell, N.; Lopes, P. P.; Hatsukade, T.; Zhou, X.; Liu, Y.; Fisher, B.; Chung, D. Y.; Kanatzidis, M. G.; Markovic, N. M.; Tepavcevic, S.; Stamenkovic, V. R., “Employing the Dynamics of the Electrochemical Interface at Aqueous Zinc-Ion Battery Cathode“, Advanced Functional Materials, June 23, 2021, DOI: 10.1002/adfm.202102135. View

Tenny, K. M.; Braatz, R. D.; Chiang, Y. M.; Brushett, F. R., “Leveraging Neural Networks and Genetic Algorithms to Refine Electrode Properties in Redox Flow Batteries“, Journal of the Electrochemical Society, June 04, 2021, DOI: 10.1149/1945-7111/abf77c. View

Wang, H.; Ryu, J.; Shao, Y.; Murugesan, V.; Persson, K. A.; Zavadil, K.; Mueller, K. T.; Liu, J., “Advancing electrolyte solution chemistry and interfacial electrochemistry of divalent metal batteries“, Chemelectrochem, June 04, 2021, DOI: 10.1002/celc.202100484. View

Griffith, K. J.; Ding, F.; Flynn, S., “Solid-state nuclear magnetic resonance of spin-9/2 nuclei 115In and 209Bi in functional inorganic complex oxides“, Magnetic Resonance in Chemistry, June 03, 2021, DOI: 10.1002/mrc.5183. View

Johnson, I. D.; Stapleton, N.; Nolis, G.; Bauer, D.; Parajuli, P.; Yoo, H. D.; Yin, L.; Ingram, B. J.; Klie, R. F.; Lapidus, S.; Darr, J. A.; Cabana, J., “Control of crystal size tailors the electrochemical performance of α-V2O5 as a Mg2+ intercalation host“, Nanoscale, May 28, 2021, DOI: 10.1039/d1nr03080a. View

Szymanski, N. J.; Bartel, C. J.; Zeng, Y.; Tu, Q.; Ceder, G., “Probabilistic Deep Learning Approach to Automate the Interpretation of Multi-phase Diffraction Spectra“, Chemistry of Materials, May 26, 2021, DOI: 10.1021/acs.chemmater.1c01071. View

Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F., “Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries“, Accounts of Chemical Research, May 25, 2021, DOI: 10.1021/acs.accounts.0c00874. View

Shkrob, I. A.; Robertson, L. A.; Yu, Z.; Assary, R. S.; Cheng, L.; Zhang, L.; Sarnello, E.; Liu, X.; Li, T.; Kaur, A. P.; Suduwella, T. M.; Odom, S. A.; Wang, Y.; Ewoldt, R. H.; Farag, H. M.; Zhang, Y., “Crowded Electrolytes Containing Redoxmers in Different States of Charge: Solution Structure, Properties, and Fundamental Limits on Energy Density“, Journal of Molecular Liquids, May 23, 2021, DOI: 10.1016/j.molliq.2021.116533. View

Szymanski, N. J.; Zeng, Y.; Huo, H.; Bartel, C. J.; Kim, H.; Ceder, G., “Toward autonomous design and synthesis of novel inorganic materials“, Materials Horizons, May 19, 2021, DOI: 10.1039/d1mh00495f. View

Yang, F.; Feng, X.; Glans, P. A.; Guo, J., “MoS2 for beyond lithium-ion batteries“, APL Materials, May 17, 2021, DOI: 10.1063/5.0050118. View

Cao, L; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C.; Chen, L.; Vatamanu, J.; Hu, E.; Hourwitz, M. J.; Ma, L.; Ding, M.; Li, Q.; Hou, S.; Gaskell, K.; Fourkas, J. T.; Yang, X. Q.; Xu, K.; Borodin, O.; Wang, C., “Fluorinated interphase enables reversible aqueous zinc battery chemistries“, Nature Nanotechnology, May 10, 2021, DOI: 10.1038/s41565-021-00905-4. View

Huang, C.; Mutailipu, M.; Zhang, F.; Griffith, K. J.; Hu, C.; Yang, Z.; Griffin, J. M.; Poeppelmeier, K. R.; Pan, S., “Expanding the chemistry of borates with functional [BO2]- anions“, Nature Communications, May 10, 2021, DOI: 10.1038/s41467-021-22835-4. View

Baskin, A.; Lawson, J. W.; Prendergast, D., “Anion-Assisted Delivery of Multivalent Cations to Inert Electrodes“, Journal of Physical Chemistry Letters, April 30, 2021, DOI: 10.1021/acs.jpclett.1c00943. View

Kaup, K.; Bishop, K.; Assoud, A.; Liu, J.; Nazar, L., “Fast Ion-Conducting Thioboracite with a Perovskite Topology and Argyrodite-like Lithium Substructure“, Journal of the American Chemical Society, April 30, 2021, DOI: 10.1021/jacs.1c00941. View

Zhang, Y.; Lewis, N. H. C.; Mars, J.; Wan, G.; Weadock, N. J.; Takacs, C. J.; Lukatskaya, M. R.; Steinruck, H. G.; Toney, M. F.; Tokmakoff, A.; Maginn, E. J., “Water-in-Salt LiTFSI Aqueous Electrolytes. 1. Liquid Structure from Combined Molecular Dynamics Simulation and Experimental Studies“, Journal of Physical Chemistry B, April 27, 2021, DOI: 10.1021/acs.jpcb.1c02189. View

Johnson, I. D.; Ingram, B. J.; Cabana, J., “The Quest for Functional Oxide Cathodes for Magnesium Batteries: A Critical Perspective“, ACS Energy Letters, April 26, 2021, DOI: 10.1021/acsenergylett.1c00416. View

Snyder, R. L.; Choo, Y.; Gao, K. W.; Halat, D. M.; Abel, B. A.; Sundararaman, S.; Prendergast, D.; Reimer, J. A.; Balsara, N. P.; Coates, G. W., “Improved Li+ Transport in Polyacetal Electrolytes: Conductivity and Current Fraction in a Series of Polymers“, ACS Energy Letters, April 26, 2021, DOI: 10.1021/acsenergylett.1c00594. View

Gao, K. W.; Balsara, N. P., “Electrochemical properties of poly(ethylene oxide) electrolytes above the entanglement threshold“, Solid State Ionics, April 24, 2021, DOI: 10.1016/j.ssi.2021.115609. View

Baran, M. J.; Carrington, M. E.; Sahu, S.; Baskin, A.; Song, J.; Baird, M. A.; Han, K. S.; Mueller, K. T.; Teat, S. J.; Meckler, S. M.; Fu, C.; Prendergast, D.; Helms, B. A., “Diversity-oriented synthesis of polymer membranes with ion solvation cages“, Nature, April 07, 2021, DOI: 10.1038/s41586-021-03377-7. View

Darling, R. M.; Saraidaridis, J. D.; Shovlin, C.; Fortin, M.; Murdock, L. A.; Benicewicz, B. C., “The Influence of Current Density on Transport of Vanadium Cations through Membranes with Different Charges“, Journal of the Electrochemical Society, April 07, 2021, DOI: 10.1149/1945-7111/abf264. View

Hahn, N. T.; Self, J.; Han, K. S.; Murugesan, V.; Mueller, K. T.; Persson, K. A.; Zavadil, K. R., “Quantifying Species Populations in Multivalent Borohydride Electrolytes“, Journal of Physical Chemistry B, April 02, 2021, DOI: 10.1021/acs.jpcb.1c00263. View

Han, K. S.; Hahn, N. T.; Zavadil, K. R.; Jaegers, N. R.; Chen, Y.; Hu, J. Z.; Murugesan, V.; Mueller, K. T., “Factors Influencing Preferential Anion Interactions during Solvation of Multivalent Cations in Ethereal Solvents“, Journal of Physical Chemistry C, March 11, 2021, DOI: 10.1021/acs.jpcc.0c09830. View

Kim, K.; Siegel, D. J., “Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes”, Chemistry of Materials, March 08, 2021, DOI: 10.1021/acs.chemmater.1c00096. View

Fang, C.; Loo, W. S.; Wang, R., “Salt Activity Coefficient and Chain Statistics in Poly(ethylene oxide)-Based Electrolytes“, Macromolecules, March 02, 2021, DOI: 10.1021/acs.macromol.0c01850. View

Davies, D. M.; Yang, Y.; Sablina, E. S.; Yin, Y.; Mayer, M.; Zhang, Y.; Olguin, M.; Lee, J. Z.; Lu, B.; Damien, D.; Borodin, O.; Rustomji, C. S.; Meng, Y. S., “A Safer, Wide-Temperature Liquefied Gas Electrolyte Based on Difluoromethane“, Journal of Power Sources, March 03, 2021, DOI: 10.1016/j.jpowsour.2021.229668. View

Wan, C. T. C.; Jacquemond, R. R.; Chiang, Y. M.; Nijmeijer, K.; Brushett, F. R.; Forner-Cuenca, A., “Non‐Solvent Induced Phase Separation Enables Designer Redox Flow Battery Electrodes“, Advanced Materials, March 02, 2021, DOI: 10.1002/adma.202006716. View

Widstrom, M. D.; Borodin, O.; Ludwig, K. B.; Matthews, J. E.; Bhattacharyya, S.; Garaga, M.; Cresce, A. V.; Jarry, A.; Erdi, M.; Wang, C.; Greenbaum, S.; Kofinas, P., “Water Domain Enabled Transport in Polymer Electrolytes for Lithium-Ion Batteries“, Macromolecules, March 01, 2021, DOI: 10.1021/acs.macromol.0c01960. View

Blau, S. M.; Patel, H. D.; Spotte-Smith, E. W. C.; Xie, X.; Dwaraknath, S.; Persson, K. A., “A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation“, Chemical Science, February 24, 2021, DOI: 10.1039/d0sc05647b. View

Han, M.; Zhang, R.; Gewirth, A. A.; Espinosa-Marzal, R. M., “Nanoheterogeneity of LiTFSI Solutions Transitions Close to a Surface and with Concentration“, Nano Letters, February 22, 2021, DOI: 10.1021/acs.nanolett.1c00167. View

Ma, L.; Pollard, T. P.; Zhang, Y.; Schroeder, M. A.; Ding, M. S.; Cresce, A. V.; Sun, R.; Baker, D. R.; Helms, B. A.; Maginn, E. J.; Wang, C.; Borodin, O.; Xu, K., “Functionalized Phosphonium Cations Enable Zn Metal Reversibility in Aqueous Electrolytes“, Angewandte Chemie, February 12, 2021, DOI: 10.1002/anie.202017020. View

Li, M.; Case, J.; Minteer, S. D., “Bipolar Redox‐Active Molecules in Non‐Aqueous Organic Redox Flow Batteries: Status and Challenges“, Chemelectrochem, February 10, 2021, DOI: 10.1002/celc.202001584. View

Shadike, Z.; Lee, H.; Borodin, O.; Cao, X.; Fan, X.; Wang, X.; Lin, R.; Bak, S. M.; Ghose, S.; Xu, K.; Wang, C.; Liu, J.; Xiao, J.; Yang, X. Q.; Hu, E., “Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes“, Nature Nanotechnology, January 28, 2021, DOI: 10.1038/s41565-020-00845-5 View

Liu, X.; Yu, Z.; Sarnello, E.; Qian, K.; Seifert, S.; Winans, R. E.; Cheng, L.; Li, T., “Microscopic Understanding of the Ionic Networks of “Water-in-Salt” Electrolytes“, Energy Material Advances, January 28, 2021, DOI: 10.34133/2021/7368420. View

Yang, F.; Feng, X.; Liu, Y. S.; Kao, L. C.; Glans, P. A.; Yang, W.; Guo, J., “In‐situ/operando (soft) X‐ray spectroscopy study of beyond lithium‐ion batteries”, Energy & Environmental Materials, January 22, 2021, DOI: 10.1002/eem2.12172. View

Yu, Z.; Juran, T. R.; Liu, X.; Han, K. S.; Wang, H.; Mueller, K. T.; Ma, L.; Xu, K.; Li, T.; Curtiss, L. A.; Cheng, L., “Solvation Structure and Dynamics of Mg(TFSI)2 Aqueous Electrolyte“, Energy & Environmental Materials, January 16, 2021, DOI: 10.1002/eem2.12174. View

Hachtel, J. A.; Jokisaari, J. R.; Krivanek, O. L.; Idrobo, J. C.; Klie, R. F., “Isotope-Resolved Electron Energy Loss Spectroscopy in a Monochromated Scanning Transmission Electron Microscope“, Microscopy Today, January 15, 2021, DOI: 10.1017/S1551929520001789. View

Griffin, J. D.; Pancoast, A. R.; Sigman, M. S., “Interrogation of 2,2′-Bipyrimidines as Low-Potential Two-Electron Electrolytes“, Journal of the American Chemical Society, January 07, 2021, DOI: 10.1021/jacs.0c11267. View

Patel, S. N., “100th Anniversary of Macromolecular Science Viewpoint: Solid Polymer Electrolytes in Cathode Electrodes for Lithium Batteries. Current Challenges and Future Opportunities“, ACS Macro Letters, January 04, 2021, DOI: 10.1021/acsmacrolett.0c00724. View

Sun, W.; Wang, F.; Zhang, B.; Zhang, M.; Kupers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C.; Winter, M., “A rechargeable zinc-air battery based on zinc peroxide chemistry“, Science, January 01, 2021, DOI: 10.1126/science.abb9554. View


Latest Updates

See All