Published Papers – 2021

Yu, H.; Li, J.; Li, S.; Liu, Y.; Jackson, N. E.; Moore, J. S.; Schroeder, C. M., “Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes“, Journal of the American Chemical Society, February 11, 2022, DOI: 10.1021/jacs.1c12741. View

Choo, Y.; Snyder, R. L.; Shah, N. J.; Abel, B. A.; Coates, G. W.; Balsara, N. P., “Complete Electrochemical Characterization and Limiting Current of Polyacetal Electrolytes“, Journal of the Electrochemical Society, February 11, 2022, DOI: 10.1149/1945-7111/ac4f22. View

Wen, M.; Blau, S. M.; Xie, X.; Dwaraknath, S.; Persson, K. A., “Improving machine learning performance on small chemical reaction data with unsupervised contrastive pretraining“, Chemical Science, January 11, 2022, DOI: 10.1039/d1sc06515g. View

Ma, Z.; Chen, J.; Vatamanu, J.; Borodin, O.; Bedrov, D.; Zhou, X.; Zhang, W.; Li, W.; Xu, K.; Xing, L., “Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery“, Energy Storage Materials, December 29, 2021, DOI: 10.1016/j.ensm.2021.12.045. View

Yu, Z.; Balsara, N. P.; Borodin, O.; Gewirth, A. A.; Hahn, N. T.; Maginn, E. J.; Persson, K. A.; Srinivasan, V.; Toney, M. F.; Xu, K.; Zavadil, K. R.; Curtiss, L. A.; Cheng, L., “Beyond Local Solvation Structure: Nanometric Aggregates in Battery Electrolytes and Their Effect on Electrolyte Properties“, ACS Energy Letters, December 29, 2021, DOI: 10.1021/acsenergylett.1c02391. View

Dereka, B.; Lewis, N. H. C.; Keim, J. H.; Snyder, S. A.; Tokmakoff, A., “Characterization of Acetonitrile Isotopologues as Vibrational Probes of Electrolytes“, Journal of Physical Chemistry B, December 28, 2021, DOI: 10.1021/acs.jpcb.1c09572. View

Khudiyev, T.; Grena, B.; Loke, G.; Hou, G.; Jang, H.; Lee, J.; Noel, G. H.; Alain, J.; Joannopoulos, J.; Xu, K.; Li, J.; Fink, Y.; Lee, J. T., “Thermally drawn rechargeable battery fiber enables pervasive power“, Materials Today, December 20, 2021, DOI: 10.1016/j.mattod.2021.11.020. View

Wan, C. T. C.; Greco, K. V.; Alazmi, A.; Darling, R. M.; Chiang, Y. M.; Brushett, F. R., “Methods—A Potential–Dependent Thiele Modulus to Quantify the Effectiveness of Porous Electrocatalysts“, Journal of the Electrochemical Society, December 18, 2021, DOI: 10.1149/1945-7111/ac34ce. View

Liu, X.; Lee, S. C.; Seifer, S.; Winans, R. E.; Cheng, L.; Zhang, Y.; Li, T., “Insight into the nanostructure of “water in salt” solutions: a SAXS/WAXS study on imide-based lithium salts aqueous solutions“, Energy Storage Materials, December 17, 2021, DOI: 10.1016/j.ensm.2021.12.016. View

Hahn, N. T.; Self, J.; Driscoll, D. M.; Dandu, N.; Han, K. S.; Murugesan, V.; Mueller, K. T.; Curtiss, L. A.; Balasubramanian, M.; Persson, K. A.; Zavadil, K. R., “Concentration-dependent ion correlations impact the electrochemical behavior of calcium battery electrolytes“, Physical Chemistry Chemical Physics, December 15, 2021, DOI: 10.1039/d1cp04370f. View

Gao, K. W.; Yu, X.; Darling, R. M.; Newman, J.; Balsara, N. P., “Increased Donnan exclusion in charged polymer networks at high salt concentrations“, Soft Matter, December 10, 2021, DOI: 10.1039/d1sm01511g. View

Wang, H.; Ryu, J.; McClary, S. A.; Long, D. M.; Zhou, M.; Engelhard, M. H.; Zou, L.; Quinn, J.; Kotula, P.; Han, K. S.; Jia, H.; Wang, C.; Assary, R. S.; Zavadil, K. R.; Murugesan, V.; Mueller, K. T.; Shao, Y., “An Electrochemically Activated Nanofilm for Sustainable Mg Anode with Fast Charge Transfer Kinetics“, Journal of the Electrochemical Society, December 10, 2021, DOI: 10.1149/1945-7111/ac3d2c. View

Grocke, G. L.; Zhang, H.; Kopfinger, S. S.; Patel, S. N.; Rowan, S. J., “Synthesis and Characterization of Redox-Responsive Disulfide Cross-Linked Polymer Particles for Energy Storage Applications“, ACS Macro Letters, December 09, 2021, DOI: 10.1021/acsmacrolett.1c00682. View

Cheng, Z.; Tenny, K. M.; Pizzolato, A.; Forner-Cuenca, A.; Verda, V.; Chiang, Y. M.; Brushett, F. R.; Behrou, R., “A Generalized Reduced Fluid Dynamic Model for Flow Fields and Electrodes in Redox Flow Batteries“, AIChE Journal, December 07, 2021, DOI: 10.1002/aic.17540. View

Sarbapalli, D.; Mishra, A.; Hatfield, K. O.; Gossage, Z. T.; Rodriguez-Lopez, J., “Scanning electrochemical microscopy: a versatile tool for inspecting the reactivity of battery electrodes”, Batteries: Materials principles and characterization methods (Book Chapter), December 01, 2021, DOI: 10.1088/978-0-7503-2682-7ch9. View

Shi, B.; Liu, K.; Lee, E.; Liao, C., “Differential electrochemical mass spectrometry (DEMS) for batteries”, Batteries: Materials principles and characterization methods (Book Chapter), December 01, 2021, DOI: 10.1088/978-0-7503-2682-7ch5. View

Liao, C., “Fundamentals of rechargeable lithium ion and beyond lithium ion batteries”, Batteries: Materials principles and characterization methods (Book Chapter), December 01, 2021, DOI: 10.1088/978-0-7503-2682-7ch1. View

Hou, X.; Pollard, T. P.; Zhao, W.; He, X.; Ju, X.; Wang, J.; Du, L.; Paillard, E.; Lin, H.; Xu, K.; Borodin, O.; Winter, M.; Li, J., “Simultaneous Formation of Interphases on both Positive and Negative Electrodes in High-Voltage Aqueous Lithium-Ion Batteries“, Small, December 01, 2021, DOI: 10.1002/smll.202104986. View

Neyhouse, B. J.; Tenny, K. M.; Chiang, Y. M.; Brushett, F. R., “Microelectrode-Based Sensor for Measuring Operando Active Species Concentrations in Redox Flow Cells“, ACS Applied Energy Materials, November 30, 2021, DOI: 10.1021/acsaem.1c02580. View

Zhang, Y.; Maginn, E. J., “Water-In-Salt LiTFSI Aqueous Electrolytes (2): Transport Properties and Li+ Dynamics Based on Molecular Dynamics Simulations“, Journal of Physical Chemistry B, November 23, 2021, DOI: 10.1021/acs.jpcb.1c07581. View

Ma, L.; Lee, J. Z.; Pollard, T. P.; Schroeder, M. A.; Limpert, M. A.; Craven, B.; Fess, S.; Rustomji, C. S.; Wang, C.; Borodin, O.; Xu, K., “High-Efficiency Zinc-Metal Anode Enabled by Liquefied Gas Electrolytes“, ACS Energy Letters, November 19, 2021, DOI: 10.1021/acsenergylett.1c02084. View

Greco, K. V.; Bonesteel, J. K.; Chanut, N.; Wan, C. T. C.; Chiang. Y. M.; Brushett, F. R., “Limited Accessibility to Surface Area Generated by Thermal Pretreatment of Electrodes Reduces Its Impact on Redox Flow Battery Performance“, ACS Applied Energy Materials, November 17, 2021, DOI: 10.1021/acsaem.1c01980. View

Zhang, J.; Shkrob, I. A.; Robertson, L. A.; Zhang, L., “Multiple charging and chemical stability of tripodal catholyte redoxmers“, Chemical Physics Letters, November 12, 2021, DOI: 10.1016/j.cplett.2021.139212. View

Han, K. S.; Bazak, J. D.; Chen, Y.; Graham, T. R.; Washton, N. M.; Hu, J. Z.; Murugesan, V.; Mueller, K. T., “Pulsed Field Gradient Nuclear Magnetic Resonance and Diffusion Analysis in Battery Research“, Chemistry of Materials, November 11, 2021, DOI: 10.1021/acs.chemmater.1c02891. View

Qian, K.; Seifert, S.; Winans, R. E.; Li, T., “Understanding Solvation Behavior of the Saturated Electrolytes with Small/Wide-Angle X-ray Scattering and Raman Spectroscopy“, Energy & Fuels, November 11, 2021, DOI: 10.1021/acs.energyfuels.1c03328. View

Xiang, Y.; Tao, M.; Zhong, G.; Liang, Z.; Zheng, G.; Huang, X.; Liu, X.; Jin, Y.; Xu, N.; Armand, M.; Zhang, J. G.; Xu, K.; Fu, R.; Yang, Y., “Quantitatively analyzing the failure processes of rechargeable Li metal batteries“, Science Advances, November 10, 2021, DOI: 10.1126/sciadv.abj3423. View

Simon, B. A.; Gayon-Lomardo, A.; Pino-Muñoz, C. A.; Wood, C. E.; Tenny, K. M.; Greco, K. V.; Cooper, S. J.; Forner-Cuenca, A.; Brushett, F. R.; Kucernak, A. R.; Brandon, N. P., “Combining electrochemical and imaging analyses to understand the effect of electrode microstructure and electrolyte properties on redox flow batteries“, Applied Energy, November 09, 2021, DOI: 10.1016/j.apenergy.2021.117678. View

Chen, Y.; Atwi, R.; Han, K. S.; Ryu, J.; Washton, N. M.; Hu, J. Z.; Rajput, N. N.; Mueller, K. T.; Murugesan, V., “Role of a Multivalent Ion–Solvent Interaction on Restricted Mg2+ Diffusion in Dimethoxyethane Electrolytes“, Journal of Physical Chemistry B, November 08, 2021, DOI: 10.1021/acs.jpcb.1c08729. View

Park, H.; Bartel, C. J.; Ceder, G.; Zapol, P., “Layered Transition Metal Oxides as Ca Intercalation Cathodes: A Systematic First-Principles Evaluation“, Advanced Energy Materials, November 06, 2021, DOI: 10.1002/aenm.202101698. View

Gandomi, Y. A.; Krasnikova, I. V.; Akhmetov, N. O.; Ovsyannikov, N. A.; Pogosova, M. A.; Matteucci, N. J.; Mallia, C. T.; Neyhouse, B. J.; Fenton, A. M.; Brushett, F. R.; Stevenson, K. J., “Synthesis and Characterization of Lithium-Conducting Composite Polymer–Ceramic Membranes for Use in Nonaqueous Redox Flow Batteries“, ACS Applied Materials & Interfaces, November 04, 2021, DOI: 10.1021/acsami.1c13759. View

Ding, F.; Charles, N.; Harada, J. K.; Malliakas, C. D.; Zhang, C.; dos Reis, R.; Griffith, K. J.; Nisbet, M. L.; Zhang, W.; Halasyamani, P. S.; Dravid, V. P.; Rondinelli, J. M.; Poeppelmeier, K. R., “Perovskite-like K3TiOF5 Exhibits (3 + 1)-Dimensional Commensurate Structure Induced by Octahedrally Coordinated Potassium Ions“, Journal of the Electrochemical Society, November 03, 2021, DOI: 10.1021/jacs.1c05704. View

Ewoldt, R. H.; Saengow, C., “Designing Complex Fluids“, Annual Review of Fluid Mechanics, November 01, 2021, DOI: 10.1146/annurev-fluid-031821-104935. View

Wen, X.; Yu, Z.; Zhao, Y.; Zhang, J.; Qiao, R.; Cheng, L.; Ban, C.; Guo. J., “Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure“, ACS Applied Materials & Interfaces, November 01, 2021, DOI: 10.1021/acsami.1c10446. View

Ho, J. S.; Borodin, O. A.; Ding, M. S.; Ma, L.; Schroeder, M. A.; Pastel, G. R.; Xu, K., “Understanding Lithium-ion Transport in Sulfolane- and Tetraglyme-based Electrolytes using Very Low Frequency Impedance Spectroscopy“, Energy & Environmental Materials, October 31, 2021, DOI: 10.1002/eem2.12302. View

Yan, Y.; Vogt, D. B.; Vaid, T. P.; Sigman, M. S.; Sanford, M., “Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries“, Angewandte Chemie-International Edition, October 20, 2021, DOI: 10.1002/anie.202111939. View

Yang, C.; Wu, Q.; Xie, W.; Zhang, X.; Brozena, A.; Zheng, J.; Garaga, M. N.; Ko, B. H.; Mao, Y.; He, S.; Gao, Y.; Wang, P.; Tyagi, M.; Jiao, F.; Briber, R.; Albertus, P.; Wang, C.; Greenbaum, S.; Hu, Y. Y.; Isogai, A.; Winter, M.; Xu, K.; Qi, Y.; Hu, L., “Copper-coordinated cellulose ion conductors for solid-state batteries“, Nature, October 20, 2021, DOI: 10.1038/s41586-021-03885-6. View

Mistry, A.; Srinivasan, V., “Do we need accurate understanding of transport in electrolytes?“, Joule, October 19, 2021, DOI: 10.1016/j.joule.2021.10.007. View

Li, M.; Odom, S. A.; Pancoast, A. R.; Robertson, L. A.; Vaid, T. P.; Agarwal, G.; Doan, H. A.; Wang, Y.; Suduwella, T. M.; Bheemireddy, S. R.; Ewoldt, R. H.; Assary, R. S.; Zhang, L.; Sigman, M. S.; Minteer, S. D., “Experimental Protocols for Studying Organic Non-aqueous Redox Flow Batteries“, ACS Energy Letters, October 18, 2021, DOI: 10.1021/acsenergylett.1c01675. View 

Silcox, B.; Zhang, J.; Tung, S. O.; Shkrob, I. A.; Zhang, L.; Thompson, L. T., “Cross-Platform Classifier of Chemical Stability for Charged Redoxmers“, ACS Materials Letters, October 18, 2021, DOI: 10.1021/acsmaterialslett.1c00424. View

Agarwal, G.; Doan, H. A.; Robertson, L. A.; Zhang, L.; Assary, R. S., “Discovery of Energy Storage Molecular Materials Using Quantum Chemistry-Guided Multiobjective Bayesian Optimization“, Chemistry of Materials, October 14, 2021, DOI: 10.1021/acs.chemmater.1c02040. View

Ding, M. S.; Xu, K., “A Thermoconductometric Study of Transient Behavior of Liquid Electrolytes at Phase Transition“, Journal of Physical Chemistry C, October 13, 2021, DOI: 10.1021/acs.jpcc.1c07057. View

Hou, S.; Ji, X.; Gaskell, K.; Wang, P. F.; Wang, L.; Xu, J.; Sun, R.; Borodin, O.; Wang, C., “Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics“, Science, October 07, 2021, DOI: 10.1126/science.abg3954. View

Li, M.; Agarwal, G.; Shkrob, I. A.; VanderLinden, R. T.; Case, J.; Prater, M.; Rhodes, Z.; Assary, R. S.; Minteer, S. D., “Critical Role of Structural Order in Bipolar Redox-Active Molecules for Organic Redox Flow Batteries“, Journal of Materials Chemistry A, October 06, 2021, DOI: 10.1039/d1ta04821j. View

Hong, Z.; Ward, L.; Chard, K.; Blaiszik, B.; Foster, I., “Challenges and Advances in Information Extraction from Scientific Literature: a Review“, JOM, October 05, 2021, DOI: 10.1007/s11837-021-04902-9. View

Li, J.; Pudar, S.; Yu, H.; Li, S.; Moore, J. S.; Rodriguez-Lopez, J.; Jackson, N. E.; Schroeder, C. M., “Reversible Switching of Molecular Conductance in Viologens is Controlled by the Electrochemical Environment“, Journal of Physical Chemistry C, October 05, 2021, DOI: 10.1021/acs.jpcc.1c06942. View

Wang, F.; Blanc, L. E.; Li, Q.; Faraone, A.; Ji, X.; Chen-Mayer, H. H.; Paul, R. L.; Dura, J. A.; Hu, E.; Xu, K.; Nazar, L. F.; Wang, C., “Quantifying and Suppressing Proton Intercalation to Enable High-Voltage Zn-Ion Batteries“, Advanced Energy Materials, October 04, 2021, DOI: 10.1002/aenm.202102016. View

Flynn, S.; Wang, Y.; Griffith, K. J.; Poeppelmeier, K. R., “The crystal structure of LiSc2SbO6“, Journal of Solid State Chemistry, September 25, 2021, DOI: 10.1016/j.jssc.2021.122615. View

Hankins, K.; Prabhakaran, V.; Wi, S.; Sutthanandan, V.; Johnson, G. E.; Roy, S.; Wang, H.; Shao, Y.; Thevuthasan, S.; Balbuena, P. B.; Mueller, K. T.; Murugesan, V., “Role of Polysulfide Anions in Solid-Electrolyte Interphase Formation at the Lithium Metal Surface in Li–S Batteries“, Journal of Physical Chemistry Letters, September 22, 2021, DOI: 10.1021/acs.jpclett.1c01930. View

Li, S.; Yu, H.; Li, J.; Angello, N.; Jira, E. R.; Li, B.; Burke, M. D.; Moore, J. S.; Schroeder, C. M., “Transition between Nonresonant and Resonant Charge Transport in Molecular Junctions“, Nano Letters, September 16, 2021, DOI: 10.1021/acs.nanolett.1c02915. View

Cao, C.; Pollard, T. P.; Borodin, O.; Mars, J. E.; Tsao, Y.; Lukatskaya, M. R.; Kasse, R. M.; Schroeder, M. A.; Xu, K.; Toney, M. F.; Steinruck, H. G., “Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase“, Chemistry of Materials, September 14, 2021, DOI: 10.1021/acs.chemmater.1c01744. View

Sundararaman, S.; Halat, D. M.; Choo, Y.; Snyder, R. L.; Abel, B. A.; Coates, G. W.; Reimer, J. A.; Balsara, N. P.; Prendergast, D., “Exploring the Ion Solvation Environments in Solid-State Polymer Electrolytes through Free-Energy Sampling“, Macromolecules, September 14, 2021, DOI: 10.1021/acs.macromol.1c01417. View

Hoffman, Z. J.; Shah, D. B.; Balsara, N. P., “Temperature and concentration dependence of the ionic transport properties of poly(ethylene oxide) electrolytes“, Solid State Ionics, September 13, 2021, DOI: 10.1016/j.ssi.2021.115751. View

Zhang, Y.; Wan, G.; Lewis, N. H. C.; Mars, J.; Bone, S. E.; Steinruck, H. G.; Lukatskaya, M. R.; Weadock, N. J.; Bajdich, M.; Borodin, O.; Tokmakoff, A.; Toney, M. F.; Maginn, E. J., “Water or Anion? Uncovering the Zn2+ Solvation Environment in Mixed Zn(TFSI)2 and LiTFSI Water-in-Salt Electrolytes“, ACS Energy Letters, September 08, 2021, DOI: 10.1021/acsenergylett.1c01624. View

Hancock, J. C.; Griffith, K. J.; Choi, Y.; Bartel, C. J.; Lapidus, S. H.; Vaughey, J. T.; Ceder, G.; Poeppelmeier, K. R., “Expanding the Ambient-Pressure Phase Space of CaFe2O4-Type Sodium Postspinel Host–Guest Compounds“, ACS Organic & Inorganic, September 01, 2021, DOI: 10.1021/acsorginorgau.1c00019. View

Özdogru, B.; Cha, Y.; Gwalani, B.; Murugesan, V.; Song, M. K.; Çapraz, O. O., “In Situ Probing Potassium-Ion Intercalation-Induced Amorphization in Crystalline Iron Phosphate Cathode Materials“, Nano Letters, September 01, 2021, DOI: 10.1021/acs.nanolett.1c02095. View

Özdogru, B.; Cha, Y.; Gwalani, B.; Murugesan, V.; Song, M. K.; Çapraz, O. O., “In Situ Probing Potassium-Ion Intercalation-Induced Amorphization in Crystalline Iron Phosphate Cathode Materials“, Nano Letters, September 01, 2021, DOI: 10.1021/acs.nanolett.1c02095. View

Galluzzo, M. D.; Grundy, L. S.; Takacs, C. J.; Cao, C.; Steinruck, H. G.; Fu, S.; Valadez, M. A. R.; Toney, M. F.; Balsara, N. P., “Orientation-Dependent Distortion of Lamellae in a Block Copolymer Electrolyte under DC Polarization“, Macromolecules, August 27, 2021, DOI: 10.1021/acs.macromol.1c01295. View

Huang, B.; Rao, R. R.; You, S.; Myint, K. H.; Song, Y.; Wang, Y.; Ding, W.; Giordano, L.; Zhang, Y.; Wang, T.; Muy, S.; Katayama, Y.; Grossman, J. C.; Willard, A. P.; Xu, K.; Jiang, Y.; Shao-Horn, Y., “Cation- and pH-Dependent Hydrogen Evolution and Oxidation Reaction Kinetics“, JACS Au, August 25, 2021, DOI: 10.1021/jacsau.1c00281. View

Abel, B. A.; Snyder, R. L.; Coates, G. W., “Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals“, Science, August 13, 2021, DOI: 10.1126/science.abh0626. View

Yan, Y.; Robinson, S. G.; Vaid, T. P.; Sigman, M. S.; Sanford, M. S., “Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents“, Journal of the American Chemical Society, August 13, 2021, DOI: 10.1021/jacs.1c07237. View

Xie, X.; Spotte-Smith, E. W. C.; Wen, M.; Patel, H. D.; Blau, S. M.; Persson, K. A., “Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network“, Journal of the American Chemical Society, August 11, 2021, DOI: 10.1021/jacs.1c05807. view

Li, J.; Hou, X.; Wang, R.; He, X.; Pollard, T. P.; Ju, X.; Du, L.; Paillard, E.; Frielinghaus, H.; Barnsley, L. C.; Borodin, O.; Xu, K.; Winter, M., “Stabilizing the solid-electrolyte interphase with polyacrylamide for high-voltage aqueous lithium-ion batteries“, Angewandte Chemie-International Edition, August 11, 2021, DOI: 10.1002/anie.202107252. View

McColl, K.; Griffith, K. J.; Dally, R. L.; Li, R.; Douglas, J. E.; Poeppelmeier, K. R.; Cora, F.; Levin, I.; Butala, M. M., “Energy storage mechanisms in vacancy-ordered Wadsley–Roth layered niobates“, Journal of Materials Chemistry A, August 11, 2021, DOI: 10.1039/d1ta02992d. View

Yang, F.; Feng, X.; Liu, Y. S.; Glans, P. A.; Guo, J., “In situ/operando soft x-ray spectroscopy of chemical interfaces in gas and liquid environments“, MRS Bulletin, August 09, 2021, DOI: 10.1557/s43577-021-00155-8. View

Aubrey, M. L.; Axelson, J. C.; Engler, K. E.; Long, J. R., “Dependence of Linker Length and Composition on Ionic Conductivity and Lithium Deposition in Single-Ion Conducting Network Polymers“, Macromolecules, August 08, 2021, DOI: 10.1021/acs.macromol.1c00911. View

Agarwal, G.; Howard, J. D.; Prabhakaran, V.; Johnson, G. E.; Murugesan, V.; Mueller, K. T.; Curtiss, L. A.; Assary, R. S., “Insights into Spontaneous Solid Electrolyte Interphase Formation at Magnesium Metal Anode Surface from Ab Initio Molecular Dynamics Simulations“, ACS Applied Materials & Interfaces, August 06, 2021, DOI: 10.1021/acsami.1c07864. View

Spotte-Smith, E. W. C.; Blau, S. M.; Xie, X.; Patel, H. D.; Wen, M.; Wood, B.; Dwaraknath, S.; Persson, K. A., “Quantum chemical calculations of lithium-ion battery electrolyte and interphase species“, Scientific Data, August 05, 2021, DOI: 10.1038/s41597-021-00986-9. View

Ringsby, A. J.; Fong, K. D.; Self, J.; Bergstrom, H. K.; McCloskey, B. D.; Persson, K. A., “Transport Phenomena in Low Temperature Lithium-Ion Battery Electrolytes“, Journal of the Electrochemical Society, August 04, 2021, DOI: 10.1149/1945-7111/ac1735. View

Özdogru, B.; Dykes, H.; Gregory, D.; Saurel, D.; Murugesan, V.; Casas-Cabanas, M.; Çapraza, Ö. Ö., “Elucidating cycling rate-dependent electrochemical strains in sodium iron phosphate cathodes for Na-ion batteries“, Journal of Power Sources, August 03, 2021, DOI: 10.1016/j.jpowsour.2021.230297. View

Schroeder, M. A.; Ma, L.; Pastel, G.; Xu, K., “The mystery and promise of multivalent metal-ion batteries“, Current Opinion in Electrochemistry, July 24, 2021, DOI: 10.1016/j.coelec.2021.100819. View

Siegel, D. J.; Nazar, L.; Chiang, Y. M.; Fang, C.; Balsara, N. P., “Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes“, Trends in Chemistry, July 23, 2021, DOI: 10.1016/j.trechm.2021.06.004. View

Valle, J. M.; Huang, C.; Tatke, D.; Wolfenstine, J.; Go, W.; Kim, Y.; Sakamoto, J., “Characterization of hot-pressed von Alpen type NASICON ceramic electrolytes“, Solid State Ionics, July 20, 2021, DOI: 10.1016/j.ssi.2021.115712. View

Blanc, L.; Bartel, C. J.; Kim, H.; Tian, Y.; Kim, H.; Miura, A.; Ceder, G.; Nazar, L., “Toward the Development of a High-Voltage Mg Cathode Using a Chromium Sulfide Host“, ACS Materials Letters, July 15, 2021, DOI: 10.1021/acsmaterialslett.1c00308. View

Loo, W. S.; Fang, C.; Balsara, N.; Wang, R., “Uncovering Local Correlations in Polymer Electrolytes by X-ray Scattering and Molecular Dynamics Simulations“, Macromolecules, July 08, 2021, DOI: 10.1021/acs.macromol.1c00995. View

Yin, L.; Kwon, B. J.; Choi, Y.; Bartel, C. J.; Yang, M.; Liao, C.; Key, B.; Ceder, G.; Lapidus, S. H., “Operando X-ray Diffraction Studies of the Mg-Ion Migration Mechanisms in Spinel Cathodes for Rechargeable Mg-Ion Batteries“, Journal of the American Chemical Society, July 08, 2021, DOI: 10.1021/jacs.1c04098. View

Ward, L.; Dandu, N.; Blaiszik, B.; Narayanan, B.; Assary, R. S.; Redfern, P. C.; Foster, I.; Curtiss, L. A., “Graph-Based Approaches for Predicting Solvation Energy in Multiple Solvents: Open Datasets and Machine Learning Models“, Journal of Physical Chemistry A, June 30, 2021, DOI: 10.1021/acs.jpca.1c01960. View

Halat, D. M.; Snyder, R. L.; Sundararaman, S.; Choo, Y.; Gao, K. W.; Hoffman, Z. J.; Abel, B. A.; Grundy, L. S.; Galluzzo, M. D.; Gordon, M. P.; Celik, H.; Urban, J. J.; Prendergast, D.; Coates, G. W.; Balsara, N. P.; Reimer, J. A., “Modifying Li+ and Anion Diffusivities in Polyacetal Electrolytes: A Pulsed-Field-Gradient NMR Study of Ion Self-Diffusion“, Chemistry of Materials, June 29, 2021, DOI: 10.1021/acs.chemmater.1c00339. View

Zhao, Y.; Zhang, J.; Agarwal, G.; Yu, Z.; Corman, R. E.; Wang, Y.; Robertson, L. A.; Shi, Z.; Doan, H. A.; Ewoldt, R. H.; Shkrob, I. A.; Assary, R. A.; Cheng, L.; Srinivasan, V.; Babinec, S. J.; Zhang, L., “TEMPO Allegro: Liquid Catholyte Redoxmers for Nonaqueous Redox Flow Batteries“, Journal of Materials Chemistry A, June 25, 2021, DOI: 10.1039/d1ta04297a. View

Attanayake, N. H.; Suduwella, T. M.; Yan, Y.; Kaur, A. P.; Liang, Z.; Sanford, M. S.; Odom, S. A., “Comparative Study of Organic Radical Cation Stability and Coulombic Efficiency for Nonaqueous Redox Flow Battery Applications“, Journal of Physical Chemistry C, June 25, 2021, DOI: 10.1021/acs.jpcc.1c00686. View

Becknell, N.; Lopes, P. P.; Hatsukade, T.; Zhou, X.; Liu, Y.; Fisher, B.; Chung, D. Y.; Kanatzidis, M. G.; Markovic, N. M.; Tepavcevic, S.; Stamenkovic, V. R., “Employing the Dynamics of the Electrochemical Interface at Aqueous Zinc-Ion Battery Cathode“, Advanced Functional Materials, June 23, 2021, DOI: 10.1002/adfm.202102135. View

Tenny, K. M.; Braatz, R. D.; Chiang, Y. M.; Brushett, F. R., “Leveraging Neural Networks and Genetic Algorithms to Refine Electrode Properties in Redox Flow Batteries“, Journal of the Electrochemical Society, June 04, 2021, DOI: 10.1149/1945-7111/abf77c. View

Wang, H.; Ryu, J.; Shao, Y.; Murugesan, V.; Persson, K. A.; Zavadil, K.; Mueller, K. T.; Liu, J., “Advancing electrolyte solution chemistry and interfacial electrochemistry of divalent metal batteries“, Chemelectrochem, June 04, 2021, DOI: 10.1002/celc.202100484. View

Griffith, K. J.; Ding, F.; Flynn, S., “Solid-state nuclear magnetic resonance of spin-9/2 nuclei 115In and 209Bi in functional inorganic complex oxides“, Magnetic Resonance in Chemistry, June 03, 2021, DOI: 10.1002/mrc.5183. View

Johnson, I. D.; Stapleton, N.; Nolis, G.; Bauer, D.; Parajuli, P.; Yoo, H. D.; Yin, L.; Ingram, B. J.; Klie, R. F.; Lapidus, S.; Darr, J. A.; Cabana, J., “Control of crystal size tailors the electrochemical performance of α-V2O5 as a Mg2+ intercalation host“, Nanoscale, May 28, 2021, DOI: 10.1039/d1nr03080a. View

Szymanski, N. J.; Bartel, C. J.; Zeng, Y.; Tu, Q.; Ceder, G., “Probabilistic Deep Learning Approach to Automate the Interpretation of Multi-phase Diffraction Spectra“, Chemistry of Materials, May 26, 2021, DOI: 10.1021/acs.chemmater.1c01071. View

Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F., “Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries“, Accounts of Chemical Research, May 25, 2021, DOI: 10.1021/acs.accounts.0c00874. View

Shkrob, I. A.; Robertson, L. A.; Yu, Z.; Assary, R. S.; Cheng, L.; Zhang, L.; Sarnello, E.; Liu, X.; Li, T.; Kaur, A. P.; Suduwella, T. M.; Odom, S. A.; Wang, Y.; Ewoldt, R. H.; Farag, H. M.; Zhang, Y., “Crowded Electrolytes Containing Redoxmers in Different States of Charge: Solution Structure, Properties, and Fundamental Limits on Energy Density“, Journal of Molecular Liquids, May 23, 2021, DOI: 10.1016/j.molliq.2021.116533. View

Szymanski, N. J.; Zeng, Y.; Huo, H.; Bartel, C. J.; Kim, H.; Ceder, G., “Toward autonomous design and synthesis of novel inorganic materials“, Materials Horizons, May 19, 2021, DOI: 10.1039/d1mh00495f. View

Yang, F.; Feng, X.; Glans, P. A.; Guo, J., “MoS2 for beyond lithium-ion batteries“, APL Materials, May 17, 2021, DOI: 10.1063/5.0050118. View

Cao, L; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C.; Chen, L.; Vatamanu, J.; Hu, E.; Hourwitz, M. J.; Ma, L.; Ding, M.; Li, Q.; Hou, S.; Gaskell, K.; Fourkas, J. T.; Yang, X. Q.; Xu, K.; Borodin, O.; Wang, C., “Fluorinated interphase enables reversible aqueous zinc battery chemistries“, Nature Nanotechnology, May 10, 2021, DOI: 10.1038/s41565-021-00905-4. View

Huang, C.; Mutailipu, M.; Zhang, F.; Griffith, K. J.; Hu, C.; Yang, Z.; Griffin, J. M.; Poeppelmeier, K. R.; Pan, S., “Expanding the chemistry of borates with functional [BO2]- anions“, Nature Communications, May 10, 2021, DOI: 10.1038/s41467-021-22835-4. View

Baskin, A.; Lawson, J. W.; Prendergast, D., “Anion-Assisted Delivery of Multivalent Cations to Inert Electrodes“, Journal of Physical Chemistry Letters, April 30, 2021, DOI: 10.1021/acs.jpclett.1c00943. View

Kaup, K.; Bishop, K.; Assoud, A.; Liu, J.; Nazar, L., “Fast Ion-Conducting Thioboracite with a Perovskite Topology and Argyrodite-like Lithium Substructure“, Journal of the American Chemical Society, April 30, 2021, DOI: 10.1021/jacs.1c00941. View

Zhang, Y.; Lewis, N. H. C.; Mars, J.; Wan, G.; Weadock, N. J.; Takacs, C. J.; Lukatskaya, M. R.; Steinruck, H. G.; Toney, M. F.; Tokmakoff, A.; Maginn, E. J., “Water-in-Salt LiTFSI Aqueous Electrolytes. 1. Liquid Structure from Combined Molecular Dynamics Simulation and Experimental Studies“, Journal of Physical Chemistry B, April 27, 2021, DOI: 10.1021/acs.jpcb.1c02189. View

Johnson, I. D.; Ingram, B. J.; Cabana, J., “The Quest for Functional Oxide Cathodes for Magnesium Batteries: A Critical Perspective“, ACS Energy Letters, April 26, 2021, DOI: 10.1021/acsenergylett.1c00416. View

Snyder, R. L.; Choo, Y.; Gao, K. W.; Halat, D. M.; Abel, B. A.; Sundararaman, S.; Prendergast, D.; Reimer, J. A.; Balsara, N. P.; Coates, G. W., “Improved Li+ Transport in Polyacetal Electrolytes: Conductivity and Current Fraction in a Series of Polymers“, ACS Energy Letters, April 26, 2021, DOI: 10.1021/acsenergylett.1c00594. View

Gao, K. W.; Balsara, N. P., “Electrochemical properties of poly(ethylene oxide) electrolytes above the entanglement threshold“, Solid State Ionics, April 24, 2021, DOI: 10.1016/j.ssi.2021.115609. View

Baran, M. J.; Carrington, M. E.; Sahu, S.; Baskin, A.; Song, J.; Baird, M. A.; Han, K. S.; Mueller, K. T.; Teat, S. J.; Meckler, S. M.; Fu, C.; Prendergast, D.; Helms, B. A., “Diversity-oriented synthesis of polymer membranes with ion solvation cages“, Nature, April 07, 2021, DOI: 10.1038/s41586-021-03377-7. View

Darling, R. M.; Saraidaridis, J. D.; Shovlin, C.; Fortin, M.; Murdock, L. A.; Benicewicz, B. C., “The Influence of Current Density on Transport of Vanadium Cations through Membranes with Different Charges“, Journal of the Electrochemical Society, April 07, 2021, DOI: 10.1149/1945-7111/abf264. View

Hahn, N. T.; Self, J.; Han, K. S.; Murugesan, V.; Mueller, K. T.; Persson, K. A.; Zavadil, K. R., “Quantifying Species Populations in Multivalent Borohydride Electrolytes“, Journal of Physical Chemistry B, April 02, 2021, DOI: 10.1021/acs.jpcb.1c00263. View

Han, K. S.; Hahn, N. T.; Zavadil, K. R.; Jaegers, N. R.; Chen, Y.; Hu, J. Z.; Murugesan, V.; Mueller, K. T., “Factors Influencing Preferential Anion Interactions during Solvation of Multivalent Cations in Ethereal Solvents“, Journal of Physical Chemistry C, March 11, 2021, DOI: 10.1021/acs.jpcc.0c09830. View

Kim, K.; Siegel, D. J., “Multivalent Ion Transport in Anti-Perovskite Solid Electrolytes”, Chemistry of Materials, March 08, 2021, DOI: 10.1021/acs.chemmater.1c00096. View

Fang, C.; Loo, W. S.; Wang, R., “Salt Activity Coefficient and Chain Statistics in Poly(ethylene oxide)-Based Electrolytes“, Macromolecules, March 02, 2021, DOI: 10.1021/acs.macromol.0c01850. View

Davies, D. M.; Yang, Y.; Sablina, E. S.; Yin, Y.; Mayer, M.; Zhang, Y.; Olguin, M.; Lee, J. Z.; Lu, B.; Damien, D.; Borodin, O.; Rustomji, C. S.; Meng, Y. S., “A Safer, Wide-Temperature Liquefied Gas Electrolyte Based on Difluoromethane“, Journal of Power Sources, March 03, 2021, DOI: 10.1016/j.jpowsour.2021.229668. View

Wan, C. T. C.; Jacquemond, R. R.; Chiang, Y. M.; Nijmeijer, K.; Brushett, F. R.; Forner-Cuenca, A., “Non‐Solvent Induced Phase Separation Enables Designer Redox Flow Battery Electrodes“, Advanced Materials, March 02, 2021, DOI: 10.1002/adma.202006716. View

Widstrom, M. D.; Borodin, O.; Ludwig, K. B.; Matthews, J. E.; Bhattacharyya, S.; Garaga, M.; Cresce, A. V.; Jarry, A.; Erdi, M.; Wang, C.; Greenbaum, S.; Kofinas, P., “Water Domain Enabled Transport in Polymer Electrolytes for Lithium-Ion Batteries“, Macromolecules, March 01, 2021, DOI: 10.1021/acs.macromol.0c01960. View

Blau, S. M.; Patel, H. D.; Spotte-Smith, E. W. C.; Xie, X.; Dwaraknath, S.; Persson, K. A., “A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation“, Chemical Science, February 24, 2021, DOI: 10.1039/d0sc05647b. View

Han, M.; Zhang, R.; Gewirth, A. A.; Espinosa-Marzal, R. M., “Nanoheterogeneity of LiTFSI Solutions Transitions Close to a Surface and with Concentration“, Nano Letters, February 22, 2021, DOI: 10.1021/acs.nanolett.1c00167. View

Ma, L.; Pollard, T. P.; Zhang, Y.; Schroeder, M. A.; Ding, M. S.; Cresce, A. V.; Sun, R.; Baker, D. R.; Helms, B. A.; Maginn, E. J.; Wang, C.; Borodin, O.; Xu, K., “Functionalized Phosphonium Cations Enable Zn Metal Reversibility in Aqueous Electrolytes“, Angewandte Chemie, February 12, 2021, DOI: 10.1002/anie.202017020. View

Li, M.; Case, J.; Minteer, S. D., “Bipolar Redox‐Active Molecules in Non‐Aqueous Organic Redox Flow Batteries: Status and Challenges“, Chemelectrochem, February 10, 2021, DOI: 10.1002/celc.202001584. View

Shadike, Z.; Lee, H.; Borodin, O.; Cao, X.; Fan, X.; Wang, X.; Lin, R.; Bak, S. M.; Ghose, S.; Xu, K.; Wang, C.; Liu, J.; Xiao, J.; Yang, X. Q.; Hu, E., “Identification of LiH and nanocrystalline LiF in the solid–electrolyte interphase of lithium metal anodes“, Nature Nanotechnology, January 28, 2021, DOI: 10.1038/s41565-020-00845-5 View

Liu, X.; Yu, Z.; Sarnello, E.; Qian, K.; Seifert, S.; Winans, R. E.; Cheng, L.; Li, T., “Microscopic Understanding of the Ionic Networks of “Water-in-Salt” Electrolytes“, Energy Material Advances, January 28, 2021, DOI: 10.34133/2021/7368420. View

Yang, F.; Feng, X.; Liu, Y. S.; Kao, L. C.; Glans, P. A.; Yang, W.; Guo, J., “In‐situ/operando (soft) X‐ray spectroscopy study of beyond lithium‐ion batteries”, Energy & Environmental Materials, January 22, 2021, DOI: 10.1002/eem2.12172. View

Yu, Z.; Juran, T. R.; Liu, X.; Han, K. S.; Wang, H.; Mueller, K. T.; Ma, L.; Xu, K.; Li, T.; Curtiss, L. A.; Cheng, L., “Solvation Structure and Dynamics of Mg(TFSI)2 Aqueous Electrolyte“, Energy & Environmental Materials, January 16, 2021, DOI: 10.1002/eem2.12174. View

Hachtel, J. A.; Jokisaari, J. R.; Krivanek, O. L.; Idrobo, J. C.; Klie, R. F., “Isotope-Resolved Electron Energy Loss Spectroscopy in a Monochromated Scanning Transmission Electron Microscope“, Microscopy Today, January 15, 2021, DOI: 10.1017/S1551929520001789. View

Griffin, J. D.; Pancoast, A. R.; Sigman, M. S., “Interrogation of 2,2′-Bipyrimidines as Low-Potential Two-Electron Electrolytes“, Journal of the American Chemical Society, January 07, 2021, DOI: 10.1021/jacs.0c11267. View

Patel, S. N., “100th Anniversary of Macromolecular Science Viewpoint: Solid Polymer Electrolytes in Cathode Electrodes for Lithium Batteries. Current Challenges and Future Opportunities“, ACS Macro Letters, January 04, 2021, DOI: 10.1021/acsmacrolett.0c00724. View

Sun, W.; Wang, F.; Zhang, B.; Zhang, M.; Kupers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C.; Winter, M., “A rechargeable zinc-air battery based on zinc peroxide chemistry“, Science, January 01, 2021, DOI: 10.1126/science.abb9554. View

 

Latest Updates

See All
  • JCESR Spotlight: Bob Jin Kwon, A Postdoc with Passion and Perseverance

    Argonne recognizes Kwon’s contributions to battery science with the Postdoctoral Performance Award. Article authored by: Michael Matz, Argonne Associate Bob Jin Kwon likes a good challenge, particularly when it comes to developing completely new kinds of batteries. “Developing new battery technologies is very challenging,” said … Read More

  • JCESR Spotlight: Lily Robertson Recognized for Her Contributions to Battery Research

    Argonne’s Postdoctoral Performance Award recognizes scientific achievements, leadership, and collaboration. Article authored by: Michael Matz, Argonne Associate Since her early days growing up in the Pacific Northwest, Lily Robertson has always wanted to help make the world a better place. “For as … Read More

  • Understanding fluorine-free electrolytes via small-angle X-ray scattering

    We compare the solvation phenomenon of sodium tetraphenylborate (NaBPh4) salt dissolved in organic solvents of propylene carbonate (PC), 1,2-dimethoxyethane (DME), acetonitrile (ACN) and tetrahydrofuran (THF) by SAXS/WAXS measurement and MD simulation. Read More

  • Navigating the Minefield of Battery Literature

    This is an invited perspective aiming to help researchers new to the field of battery research to circumvent certain recurring misconceptions and inaccuracies in the current battery literature. It covers the electrolyte ideality and practical situation in batteries, the difficulty in accurately determining ion transference … Read More

  • Quantifying Lithium Ion Exchange in Solid Electrolyte Interphase (SEI) on Graphite Anode Surfaces

    By using Li isotopic labelling of SEIs and electrolytes followed by time-of-flight secondary-ion mass spectroscopy and solid-state NMR analyses, we found that the majority of Li+ “immobilized” in the chemical ingredients were exchanged after 1 SEI formation cycle. Ion exchange by diffusion based on concentration … Read More