Published Papers – 2020

Jiang, X.; Laffoon, S. D.; Chen, D.; Perez,-Estrada, S.; Danis, A. S.; Rodriguez-Lopez, J.; Garcia-Garibay, M. A.; Zhu, J.; Moore, J. S., “Kinetic Control in the Synthesis of a Möbius Tris((ethynyl)[5]helicene) Macrocycle Using Alkyne Metathesis“, Journal of the American Chemical Society, March 25, 2020, DOI: 10.1021/jacs.0c01430. View

Li, Z.; Robertson, L. A.; Shkrob, I.; Smith, K. C.; Cheng, L.; Zhang, L.; Moore, J. S.; Zang, Y., “Realistic Ion Dynamics through Charge Renormalization in Nonaqueous Electrolytes“, Journal of Physical Chemistry B, March 24, 2020, DOI: 10.1021/acs.jpcb.0c01197. View

Smith, J. G.; Siegel, D. J., “Low-temperature paddlewheel effect in glassy solid electrolytes“, Nature Communications, March 20, 2020, DOI: 10.1038/s41467-020-15245-5. View

Ma, L.; Schroeder, M. A.; Pollard, T. P.; Borodin, O.; Ding, M. S.; Sun, R.; Cao, L.; Ho, J.; Baker, D. R.; Wang, C.; Xu, K., “Critical Factors Dictating Reversibility of the Zinc Metal Anode“, Energy & Environmental Materials, March 18, 2020, DOI: 10.1002/eem2.12077. View

Kato, R.; Mirmira, P.; Sookezian, A.; Grocke, G. L.; Patel, S. N.; Rowan, S. J., “Ion-Conducting Dynamic Solid Polymer Electrolyte Adhesives“, ACS Macro Letters, March 19, 2020, DOI: 10.1021/acsmacrolett.0c00142. View

Li, S.; Li, J.; Yu, H.; Pudar, S.; Li, B.; Rodriguez-Lopez, J.; Moore, J. S.; Schroeder, C. M., “Characterizing intermolecular interactions in redox-active pyridinium-based molecular junctions“, Journal of Electroanalytical Chemistry, March 14, 2020, DOI: 10.1016/j.jelechem.2020.114070. View

Ko, J. S.; Paul, P. P.; Wan, G.; Seitzman, N.; DeBlock, R. H.; Dunn, B. S.; Toney, M. F.; Weker, J. N., “NASICON Na3V2(PO4)3 Enables Quasi-Two-Stage Na+ and Zn2+ Intercalation for Multivalent Zinc Batteries“, Chemistry of Materials, March 11, 2020, DOI: 10.1021/acs.chemmater.0c00004. View

Hancock, J. C.; Nisbet, M. L.; Zhang, W.; Halasyamani, P. S.; Poeppelmeier, K. R., “Periodic Tendril Perversion and Helices in the AMoO2F3 (A = K, Rb, NH4, Tl) Family“, Journal of the American Chemical Society, March 11, 2020, DOI: 10.1021/jacs.0c01218. View

Schwanz, D. K.; Villa, A.; Balasubramanian, M.; Helfrecht, B.; Marinero, E. E., “Bi aliovalent substitution in Li7La3Zr2O12 garnets: Structural and ionic conductivity effects“, AIP Advances, March 02, 2020, DOI: 10.1063/1.5141764. View

Chen, L.; Zhang, J.; Li, Q.; Vatamanu, J.; Ji, X.; Pollard, T. P.; Cui, C.; Hou, S.; Chen, J.; Yang, C.; Ma, L.; Ding, M. S.; Garaga, M.; Greenbaum, S.; Lee, H. S.; Borodin, O.; Xu, K.; Wang, C., “A 63 m Super-concentrated Aqueous Electrolyte for High Energy Li-ion Batteries“, ACS Energy Letters, February 27, 2020, DOI: 10.1021/acsenergylett.0c00348. View

Blanc, L. E.; Sun, X.; Shyamsunder, A.; Duffort, V.; Nazar, L. F., “Direct Nano-Synthesis Methods Notably Benefit Mg-Battery Cathode Performance“, Small Methods, February 25, 2020, DOI: 10.1002/smtd.202000029. View

Steinrueck, H. G.; Cao, C.; Veith, G. M.; Toney, M. F., “Toward quantifying capacity losses due to solid electrolyte interphase evolution in silicon thin film batteries“, Journal of Chemical Physics, February 24, 2020, DOI: 10.1063/1.5142643. View

Kaur, A. P.; Harris, O. C.; Attanayake, N. H.; Liang, Z.; Parkin, S. R.; Tang, M. H.; Odom, S. A., “Quantifying Environmental Effects on the Solution and Solid-State Stability of Phenothiazine Radical Cations“, Chemistry of Materials, February 21, 2020, DOI: 10.1021/acs.chemmater.9b05345. View

Self, J.; Hahn, N. T.; Fong, K. D.; McClary, S. A.; Zavadil, K. R.; Persson, K. A., “Ion Pairing and Redissociaton in Low Permittivity Electrolytes for Multivalent Battery Applications“, Journal of Physical Chemistry Letters, February 20, 2020, DOI: 10.1021/acs.jpclett.0c00334. View

Brushett, F. R.; Aziz, M. J.; Rodby, K. E., “On Lifetime and Cost of Redox-Active Organics for Aqueous Flow Batteries“, ACS Energy Letters, February 20, 2020, DOI: 10.1021/acsenergylett.0c00140. View

Park, H.; Cui, Y.; Kim, S.; Vaughey, J. T.; Zapol, P., “Ca Cobaltites as Potential Cathode Materials for Rechargeable Ca Ion Batteries: Theory and Experiment“, Journal of Physical Chemistry C, February 19, 2020, DOI: 10.1021/acs.jpcc.9b11192. View

Sanford, M.; Shrestha, M.; Hendriks, K.; Sigman, M.; Minteer, S., “Realization of an Asymmetric Non-Aqueous Redox Flow Battery Through Molecular Design to Minimize Active Species Crossover and Decomposition“, Chemistry – A European Journal, February 12, 2020, DOI: 10.1002/chem.202000749. View

Chintapalli, M.; Timachova, K.; Olson, K. R.; Mecham, S. J.; DeSimone, J. M.; Balsara, N. P., “Lithium Salt Distribution and Thermodynamics in Electrolytes Based on Short Perfluoropolyether-block-Poly(ethylene oxide) Copolymers“, Macromolecules, February 10, 2020, DOI: 10.1021/acs.macromol.9b01637.View

Crothers, A. R.; Darling, R. M.; Kushner, D. I.; Perry, M. L.; Weber, A. Z., “Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part III. Transport in Vanadium Redox-Flow-Battery Separators“, Journal of the Electrochemical Society, February 07, 2020, DOI: 10.1149/1945-7111/ab6725. View

Crothers, A. R.; Darling, R. M.; Kusoglu, A.; Radke, C. J.; Weber, A. Z., “Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part II. Transport Model and Validation“, Journal of the Electrochemical Society, February 07, 2020, DOI: 10.1149/1945-7111/ab6724. View

Crothers, A. R.; Darling, R. M.; Kusoglu, A.; Radke, C. J.; Weber, A. Z., “Theory of Multicomponent Phenomena in Cation-Exchange Membranes: Part I. Thermodynamic Model and Validation“, Journal of the Electrochemical Society, February 07, 2020, DOI: 10.1149/1945-7111/ab6723. View

Chen, Y.; Jaegers, N. R.; Han, K. S.; Wang, H.; Young, R. P.; Agarwal, G.; Lipton, A. S.; Assary, R. S.; Washton, N. M.; Hu, J. Z.; Mueller, K. T.; Murugesan, V., “Probing Conformational Evolution and Associated Dynamics of Mg(N(SO2CF3)2)2 · Dimethoxyethane Adduct Using Solid-State 19F and 1H NMR“, Journal of Physical Chemistry B, February 07, 2020, DOI: 10.1021/acs.jpcc.9b10212. View

Tepavcevic, S.; Zheng, H.; Hinks, D. G.; Key, B.; Ward, L.; Lu, Z.; Stoumpos, C.; Ren, Y.; Freeland, J. W.; Wolverton, C.; Phillips, P.; Klie, R.; Mitchell, J. F.; Markovic, N. M., “Fundamental Insights from a Single-Crystal Sodium Iridate Battery“, Advanced Energy Materials, February 06, 2020, DOI: 10.1002/aenm.201903128. View

Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J., “New Concepts in Electrolytes“, Chemical Reviews, February 05, 2020, DOI: 10.1021/acs.chemrev.9b00531. View

Fan, S.; Asselin, G.; Pan, B.; Wang, H.; Ren, Y.; Vaughey, J. T.; Sa, N., “A Simple Halogen-free Magnesium Electrolyte for Reversible Magnesium Deposition through Co-solvent Assistance“, ACS Applied Materials & Interfaces, January 30, 2020, DOI: 10.1021/acsami.9b18833. View

Zhang, S.; Pollard, T. P.; Feng, X.; Borodin, O.; Xu, K.; Li, Z., “Altering electrochemical pathway of sulfur chemistry with oxygen for high energy density and low shuttling in Na-S battery“, ACS Energy Letters, January 29, 2020, DOI: 10.1021/acsenergylett.9b02746. View

Zhou, Y.; Su, M.; Yu, X.; Zhang, Y.; Wang, J. G.; Ren, X.; Cao, R.; Wu, X.; Baer, D. R.; Du, Y.; Borodin, O.; Wang, Y.; Wang, X. L.; Xu, K.; Xu, Z.; Wang, C.; Zhu, Z., “Real-time mass spectrometric characterization of the solid–electrolyte interphase of a lithium-ion battery“, Nature Nanotechnology, January 27, 2020, DOI: 10.1038/s41565-019-0618-4. View

Shin, D. M.; Bachman, J. E.; Taylor, M. K.; Kamcev, J.; Park, J. G.; Ziebel, M. E.; Velasquez, E.; Jarenwattananon, N. N.; Sethi, G. K.; Cui, Y.; Long, J. R., “A Single-Ion Conducting Borate Network Polymer as a Viable Quasi-Solid Electrolyte for Lithium Metal Batteries“, Advanced Materials, January 27, 2020, DOI: 10.1002/adma.201905771. View

Darling, R. M.; Saraidaridis, J. D.; Shovlin, C.; Fortin, M., “Transference Numbers of Vanadium Cations in Nafion“, Journal of the Electrochemical Society, January 24, 2020, DOI: 10.1149/1945-7111/ab6b0f. View

Lewis, N. H. C.; Zhang, Y.; Dereka, B.; Carino, E. V.; Magin, E. J.; Tokmakoff, A., “Signatures of Ion-Pairing and Aggregation in the Vibrational Spectroscopy of Super-Concentrated Aqueous Lithium Bistriflimide Solutions“, Journal of Physical Chemistry C, January 17, 2020, DOI: 10.1021/acs.jpcc.9b10477. View

Yu, Z.; Curtiss, L. A.; Winans, R. E.; Zhang, Y.; Li, T.; Cheng, L., “Asymmetric Composition of Ionic Aggregates and the Origin of High Correlated Transference Number in Water-In-Salt Electrolytes“, Journal of Physical Chemistry Letters, January 17, 2020, DOI: 10.1021/acs.jpclett.9b03495. View

Koettgen, J.; Bartel, C. J.; Ceder, G., “Computational investigation of chalcogenide spinel conductors for all-solid-state Mg batteries“, Chemical Communications, January 16, 2020, DOI: 10.1039/c9cc09510a. View

Borodin, O.; Self, J.; Persson, K. A.; Wang, C.; Xu, K., “Uncharted Waters: Super-Concentrated Electrolytes“, Joule, January 15, 2020, DOI: 10.1016/j.joule.2019.12.007. View

Howard, J. D.; Assary, R. S.; Curtiss, L. A., “Insights into the Interaction of Redox Active Organic Molecules and Solvents with the Pristine and Defective Graphene Surfaces from Density Functional Theory“, Journal of Physical Chemistry C, January 14, 2020, DOI: 10.1021/acs.jpcc.9b10403. View

Jaegers, N. R.; Mueller, K. T.; Wang, Y.; Hu, J. Z., “Variable Temperature and Pressure Operando MAS NMR for Catalysis Science and Related Materials“, Accounts of Chemical Research, January 13, 2020, DOI: 10.1021/acs.accounts.9b00557. View

Robinson, S. G.; Sigman, M. S., “Integrating Electrochemical and Statistical Analysis Tools for Molecular Design and Mechanistic Understanding“, Accounts of Chemical Research, January 10, 2020, DOI: 10.1021/acs.accounts.9b00527. View

Gao, K. W.; Jang, X.; Hoffman, Z. J.; Sethi, G. K.; Chakraborty, S.; Villaluenga, I.; Balsara, N. P., “Optimizing the Monomer Structure of Polyhedral Oligomeric Silsesquioxane for Ion Transport in Hybrid Organic–Inorganic Block Copolymers“, Journal of Polymer Science, January 08, 2020, DOI: 10.1002/pol.20190073. View

Latest Updates

See All
  • A Message from JCESR Director George Crabtree

    Despite the coronavirus challenges, JCESR continues to push the frontier of energy storage science as we telecommute from home, like much of the nation. We are turning our attention to computation, data analysis and paper writing which continues at a normal or higher pace, enabled … Read More

  • You’re invited: Idaho National Laboratory and JCESR webinar on energy storage (March 18 )

    Electrification is changing the energy landscape of the Mountain West region. While energy storage remains a key enabler to this transformation, infrastructure upgrade and supply chain development will be a key driver for this new economy. Join us on March 18 for a webinar where we’ll … Read More

  • Direct Nano-Synthesis Methods Notably Benefit Mg-Battery Cathode Performance

    A novel Mg cathode material – CuCo2S4 – was identified as a conversion material where direct nano-synthesis was required to provide the best electrochemical performance and deliver 350 mAh·g-1 at 60 °C, a capacity nearly double that of ball-milled material with similar dimensions. Read More

  • Quantifying Capacity Losses due to Solid Electrolyte Interphase Evolution

    We quantified the capacity loss originating in solid electrolyte interphase (SEI) growth during each cycle and extracted the proportionality constant for SEI growth following a parabolic growth law. This continuous SEI growth contributes to the increasing overpotential, leading to capacity fading at a given constant … Read More

  • On Lifetime and Cost of Redox-Active Organics for Aqueous Flow Batteries

    In this viewpoint, we recommend methodology for (1) testing aqueous organic flow batteries to better understand the fade mechanisms and failure modes, and for (2) techno-economic assessment of these batteries that incorporates the costs associated with electrolyte decay and replacement to articulate a feasible design … Read More