Published Papers – 2014

Yuyan Shao, Nav Nidhi Rajput, Jianzhi Hu, Mary Hu, Tianbiao Liu, Zhehao Wei, Meng Gu, Xuchu Deng, Suochang Xu, Kee Sung Han, Jiulin Wang, Zimin Nie, Guosheng Li, Kevin R. Zavadil, Jie Xiao, Chongmin Wang, Wesley A. Henderson, Ji-Guang Zhang, Yong Wang, Karl T. Mueller, Kristin Persson, Jun Liu, “Nanocomposite Polymer Electrolyte for Rechargeable Magnesium Batteries,” Nano Energy, Volume 12, pp 750-759, December 31, 2014, DOI: 10.1016/j.nanoen.2014.12.028
View

L. Cheng, R. S. Assary, X. Qu, A. Jain, S. P. Ong, N. N. Rajput, K. Persson, and L. A. Curtiss, “Accelerating Electrolyte Discovery for Energy Storage with High Throughput Screening (Journal Cover),” The Journal of Physical Chemistry Letters, December 26, 2014, DOI: 10.1021/jz502319n. View

H. Wu, L. A. Huff, and A. A. Gewirth, “In-Situ Raman Spectroscopy of Sulfur Speciation in Lithium-Sulfur Batteries,” ACS Applied Materials and Interfaces, December 26, 2014, DOI: 10.1021/am5072942. View

Dipan Kundu, Robert Black, Erik Jämstorp Berg and   Linda F. Nazar, “A Highly Active Nanostructured Metallic Oxide Cathode for Aprotic Li–O2 Batteries,” Energy Environ. Sci., 2015, 8, 1292-1298, December 22, 2014. DOI: 10.1039/C4EE02587C. View

Lucas R. Parent, Yingwen Cheng, Peter V. Sushko, Yuyan Shao, Jun Liu, Chong-Min Wang, and Nigel D. Browning, “Realizing the Full Potential of Insertion Anodes for Mg-Ion Batteries Through the Nanostructuring of Sn,” Nano Letters, 2015, 15 (2), pp 1177–1182, December 22, 2014, DOI: 10.1021/nl5042534
View

C. Kim, P. J. Phillips, L. Xu, A. Dong, R. Buonsanti, R. F. Klie, and J. Cabana, “Stabilization of Battery Electrode-Electrolyte Interfaces Employing Nanocrystals with Passivating Epitaxial Shells,” Chemistry of Materials, December 17, 2014, DOI: 10.1021/cm503615w. View

M. Liu, Z. Rong, R. Malik, P. Canepa, A. Jain, G. Ceder, and K. Persson, “Spinel Compounds as Multivalent Battery Cathodes: A Systematic Evaluation Based on Ab Initio Calculations,” Energy & Environmental Science, December 16, 2014, DOI: 10.1039/C4EE03389B. View

Zhi Wei Seh, Haotian Wang, Nian Liu, Guangyuan Zheng, Weiyang Li, Hongbin Yao, and Yi Cui, “High-Capacity Li2S–Graphene Oxide Composite Cathodes with Stable Cycling Performance,” Chem. Sci., 5 (4), pp 1396−1400, December 9, 2013, DOI: 10.1039/C3SC52789A. View

Zhi Wei Seh, Haotian Wang, Po-Chun Hsu, Qianfan Zhang, Weiyang Li, Guangyuan Zheng, Hongbin Yao and Yi Cui, “Facile Synthesis of Li2S–Polypyrrole Composite Structures for High-Performance Li2S Cathodes,” Energy Environ. Sci., 7 (2), pp 672−676, December 2, 2013, DOI: 10.1039/C3EE43395A. View

Y. Zhang, J. Qian,W. Xu, S. Russel, X. Chen, E. Nasybulin, P. Bhattacharya, M. H. Engelhard, D. Mei, R. Cao, F. Ding, A. V. Cresce, K. Xu, and J. Zhang, “Dendrite-Free Lithium Films with Highly-Aligned and Compacted Nanorod Structure,” Nano Letters, December 2, 2014, DOE: 10.1021/nl5039117. View

Chen Liao, Bingkun Guo, Xiao-Guang Sun, and Sheng Dai, “Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries,” ChemSusChem, Volume 8, Issue 2, pp 353–360, November 26 2014, DOI: 10.1002/cssc.201402800. View

J. Huang, L. Cheng, R. S. Assary, P. Wang, Z. Xue, A. K. Burrell, L. A. Curtiss, and L. Zhang, “Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries,” Advanced Energy Materials, November 25, 2014, DOI: 10.1002/aenm.201401782. View

U. Boesenberg, M.A. Marcus, A. Shukla, T. Yi, E. McDermott, P. F. Teh, S. Madhavi, A. Moewes, and J. Cabana, “Asymmetric Pathways in Conversion Reactions for Energy Storage,” Scientific Reports, November 20, 2014, DOI: 10.1038/srep07133. View

X. D. Ren, K. C. Lau, M. Z. Yu, X. X Bi, E. Kreidler, L. A. Curtiss, and Y. Y. Wu, “Understanding Side Reactions in K-O2 Batteries for Improved Cycle Life,” ACS Applied Materials & Interfaces, November 12, 2014, DOI: 10.1021/am505351s. View

C.J. Barile, E.C. Miller, K.R. Zavadil, R.G. Nuzzo, and A.A. Gewirth, “Electrolytic Conditioning of a Magnesium Aluminum Chloride Complex for Reversible Magnesium Deposition,” The Journal of Physical Chemistry, November 7, 2014, DOI: 10.1021/jp506951b. View

Brian D. Adams, Robert Black, Claudio Radtke, Zack Williams, B. Layla Mehdi, Nigel D. Browning, and Linda F. Nazar, “The Importance of Nanometric Passivating Films on Cathodes for Li–Air Batteries,” ACS Nano, 2014, 8 (12), pp 12483–12493, November 3, 2014, DOI: 10.1021/nn505337p. View

J. Velasco-Velez, C. H. Wu, T. A. Pascal, L. F. Wan, J. Guo, D. Prendergast, and M. Salmeron, “The Structure of Interfacial Water on Gold Electrodes Studied by X-ray Absorption Spectroscopy,” Science, October 23, 2014, DOI: 10.1126/science.1259437. View

R. S. Assary, F.R. Brushett, and L.A. Curtiss, “Reduction Potential Predictions of Some Aromatic Nitrogen-Containing Molecules,” RSC Advances, October 20, 2014, DOI: 10.1039/C4RA08563A. View

G. Nagarjuna, J. Hui, K. J. Cheng, T. Lichtenstein, M. Shen, J. S. Moore, and J. Rodríguez-López, “Impact of Redox Active Polymer Molecular Weight on the Electrochemical Properties and Transport Across Porous Separators in Non-Aqueous Solvents,” The Journal of the American Chemical Society, October 17, 2014, DOI: 10.1021/ja508482e. View

Zachary J. Barton and Joaquín Rodríguez-López, “Lithium Ion Quantification Using Mercury Amalgams as in Situ Electrochemical Probes in Nonaqueous Media,” Analytical Chemistry, 2014, 86 (21), pp 10660–10667, October 13, 2014, DOI: 10.1021/ac502517b. View

S. E. Doris, J. J. Lynch, C. Li, A. W. Wills, J. J. Urban, and B. A. Helms, “Mechanistic Insight into the Formation of Cationic Naked Nanocrystals Generated under Equilibrium Control,” The Journal of the American Chemical Society, October 10, 2014, DOI: 10.1021/ja508675t. View

K.C. Smith, V.E. Brunini, Y. Dong, Y.-M. Chiang, and W.C. Carter, “Electroactive-Zone Extension in Flow-Battery Stacks,” Electrochimica Acta, September 30, 2014, DOI: 10.1016/j.electacta.2014.09.108. View

Wanli Yanga, Jinghua Guoa, Ethan Crumlina, David Prendergastb, and Zahid Hussaina, “Experiments and Theory of In situ and Operando Soft X-ray Spectroscopy for Energy Storage,” Synchrotron Radiation News, Volume 27, Issue 5, pp 4-13, September 25, 2014, DOI: 10.1080/08940886.2014.952207. View

G. Vardar, A. E. S. Sleightholme, J. Naruse, H. Hiramatsu, D. J. Siegel, and C. W. Monroe, “Electrochemistry of Magnesium Electrolytes in Ionic Liquids for Secondary Batteries,” ACS Applied Materials & Interfaces, September 23, 2014, DOI: 10.1021/am5049064. View

M. Safari, B. D. Adams, and L. F. Nazar, “Kinetics of Oxygen Reduction in Aprotic Li–O2 Cells: A Model-Based Study,” J. Phys. Chem. Lett., 2014, 5 (20), pp 3486–3491, September 22, 2014, DOI: 10.1021/jz5018202. View

L. F. Wan and D. Prendergast, “The Solvation Structure of Mg Ions in Dichloro Complex Solutions from First-Principles Molecular Dynamics and Simulated X ray Absorption Spectra,” The Journal of the American Chemical Society, September 22, 2014, DOI: 10.1021/ja505967u. View

P.J. Phillips, H. Iddir, D.P. Abraham, and R.F. Klie, “Direct Observation of the Structural and Electronic Changes of Li2MnO3 during Electron Irradiation,” Applied Physics Letters, September 16, 2014, DOI: 10.1063/1.4896264. View

R. Darling, K. Gallagher, J. Kowalski, S. Ha, and F. Brushett, “Pathways to Low-Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries,” Energy & Environmental Science, September 16, 2014, DOI: 10.1039/c4ee02158d. View

K. S. Han, N. Rajput, X. Wei, W. Wang, J. Z. Hu, K. Persson, and K. Mueller, “Diffusional Motion of Redox Centers in Carbonate Electrolytes,” The Journal of Chemical Physics,” September 11, 2014, DOI:10.1063/1.4894481. View

Saul H. Lapidus, Nav Nidhi Rajput, Xiaohui Qu, Karena W. Chapman, Kristin A. Persson, and Peter J. Chupas, “Solvation Structure and Energetics of Electrolytes for Multivalent Energy Storage,” Phys. Chem. Chem. Phys., 16 (40), pp 21941-21945, September 10, 2014, DOI: 10.1039/C4CP03015J. View

L. Su, M. Ferrandon, J. Kowalski, J. Vaughey, and F. Brushett, “Electrolyte Development for Non-Aqueous Redox Flow Batteries Using a High-Throughput Screening Platform,” The Journal of the Electrochemical Society, September 9, 2014, DOI: 10.1149/2.0811412jes. View

L. Wu, A.E. Javier, D. Deavux, N.P. Balsara, and V. Srinivasan, “Discharge Characteristics of Lithium Battery Electrodes with a Semiconducting Polymer Studied by Continuum Modeling and Experiment,” The Journal of the Electrochemical Society, August 27, 2014, DOI: 10.1149/2.0261412jes. View

Jonathan E. Bachman, Larry A. Curtiss, and Rajeev S. Assary, “Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory,” J. Phys. Chem. A, 118 (38), pp 8852–8860, August 27, 2014, DOI: 10.1021/jp5060777. View

Quan Pang, Dipan Kundu, Marine Cuisinier, and L.F. Nazar, “Surface-Enhanced Redox Chemistry of Polysulphides on a Metallic and Polar Host for Lithium-Sulphur Batteries,” Nature Communications, 5, Article number: 4759, August 26, 2014, DOI: 10.1038/ncomms5759. View

B. D. Adams, R. Black, Z. Williams, R. Fernandes, M. Cuisinier, E. Jaemstorp Berg, P. Novak, G. K. Murphy, and L. F. Nazar, “Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery,” Advanced Energy Materials, August 21, 2014, DOI: 10.1002/aenm.201400867. View

X. Wei, L. Cosimbescu , W. Xu , J. Z. Hu, M. Vijayakumar, J. Feng, M. Y. Hu, X. Deng, J. Xiao, J. Liu, V. Sprenkle, and W. Wang, “Towards High-Performance Nonaqueous Redox Flow Electrolyte via Ionic Modification of Active Species,” Advanced Energy Materials, August 14, 2014, DOI: 10.1002/aenm.201400678. View

Yingge Du, Meng Gu, Tamas Varga, Chongmin Wang, Mark E. Bowden, and Scott A. Chambers, “Strain Accommodation by Facile WO6 Octahedral Distortion and Tilting during WO3 Heteroepitaxy on SrTiO3(001),ACS Appl. Mater. Interfaces, 6 (16), pp 14253–14258, August 4, 2014, DOI: 10.1021/am5035686. View

L. A. Huff, J. L. Rapp, J. A. Baughman, P. L. Rinaldi, and A. A. Gewirth, “Identification of Lithium–Sulfur Battery Discharge Products through 6Li and 33S Solid-State MAS and 7Li Solution NMR Spectroscopy,” Surface Science, July 31, 2014, DOI:10.1016/j.susc.2014.07.027. View

Eduard N. Nasybulin, Wu Xu, B. Layla Mehdi, Edwin Thomsen, Mark H. Engelhard, Robert C. Massé, Priyanka Bhattacharya, Meng Gu, Wendy Bennett, Zimin Nie, Chongmin Wang, Nigel D. Browning, and Ji-Guang Zhang, “Formation of Interfacial Layer and Long-Term Cyclability of Li–O2 Batteries,” ACS Appl. Mater. Interfaces, 6 (16), pp 14141–14151, July 28, 2014, DOI: 10.1021/am503390q. View

Kah Chun Lau, Jun Lu, Xiangyi Luo, Larry A. Curtiss, and Khalil Amine, “Implications of the Unpaired Spins in Li–O2 Battery Chemistry and Electrochemistry: A Minireview,” ChemPlusChem, 80 (2), pp 336−343, July 17, 2014, DOI: 10.1002/cplu.201402053. View

Ruiguo Cao, Eric D. Walter, Wu Xu, Eduard N. Nasybulin, Priyanka Bhattacharya, Mark E. Bowden, Mark H. Engelhard, and Ji-Guang Zhang, “The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium–Oxygen Batteries,” ChemSusChem, 7 (9), pp 2436−2440, July 8, 2014, DOI: 10.1002/cssc.201402315. View

Hongbin Yao, Guangyuan Zheng, Po-Chun Hsu, Desheng Kong, Judy J. Cha, Weiyang Li, Zhi Wei Seh, Matthew T. McDowell, Kai Yan, Zheng Liang, Vijay Kris Narasimhan, and Yi Cui, “Improving Lithium–Sulphur Batteries through Spatial Control of Sulphur Species Deposition on a Hybrid Electrode Surface,” Nature Communications, 5, Article number: 3943, May 27, 2014, DOI: 10.1038/ncomms4943. View

D. Eroglu, S. Ha, and K. G. Gallagher, “Fraction of the Theoretical Specific Energy Achieved on Pack Level for Hypothetical Battery Chemistries,” Journal of Power Sources, May 22, 2014, DOI: 10.1016/j.jpowsour.2014.05.071. View

S. Inceoglu, A. Rojas, D. Devaux, X. C. Chen, G. Stone, and N. P. Balsara, “Morphology−Conductivity Relationship of Single-Ion-Conducting Block Copolymer Electrolytes for Lithium Batteries,” ACS Macro Letters, May 15, 2014, DOI: 10.1021/mz5001948. View

R. Assary, L. Curtiss, and J. Moore, “Toward a Molecular Understanding of Energetics in Li−S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study,” The Journal of Physical Chemistry C, May 9, 2014, DOI: 10.1021/jp5015466. View

B. L. Mehdi, M. Gu, L. R. Parent, W. Xu, E. N. Nasybulin, X. Chen, R. R. Unocic, P. Abellan, P. Xu, C. Wang, I. Arslan, J. E. Evans, N. D. Browning, and J. Zhang, “In-Situ Electrochemical Transmission Electron Microscopy for Battery Research,” Microscopy & Microanalysis, April 23, 2014, DOI: 10.1017/S1431927614000488. View

C. Barile, R. Spatney, K. Zavadil, and A. Gewirth, “Investigating the Reversibility of in situ Generated Magnesium Organohaloaluminates for Magnesium Deposition and Dissolution,” The Journal of Physical Chemistry C, April 23, 2014, DOI: 10.1021/jp503506c. View

S. DeWitt and K. Thornton, “Model for Anodic Film Growth on Aluminum with Coupled Bulk Transport and Interfacial Reactions,” Langmuir, April 16, 2014, DOI: 10.1021/la500782d. View

F. Tian, M. D. Radin, and D. J. Siegel, “Enhanced Charge Transport in Amorphous Li2O2,” Chemistry of Materials, April 7, 2014, DOI: 10.1021/cm5007372. View

V. Murugesan, N. Govind, E. Walter, S. Burton, A. Shukla, J. Xiao, J. Liu, C. Wang, S. Thevuthasan, “Molecular Structure and Stability of Dissolved Lithium Polysulfide Species,” Physical Chemistry Chemical Physics, March 24, 2014, DOI: 10.1039/C4CP00889H. View

K. G. Gallagher, S. Goebel, T. Greszler, M. Mathias, W. Oelerich, D. Eroglu, and V. Srinivasan, “Quantifying the Promise of Lithium-Air Batteries for Electric Vehicles,” Energy & Environmental Science, March 24, 2014, DOI: 10.1039/C3EE43870H. View

K. C. Lau, J. Lu, J. Low, D. Peng, L. A. Curtiss, K. Amine, “Investigation of Decomposition Mechanism of LiBOB Salt in the Electrolyte of an Aprotic Li-O2 Cell,” Energy Technology, March 13, 2014, DOI: 10.1002/ente.201300164. View

F. Fan, W. Woodford, Z. Li, N. Baram, K. Smith, A. Helal, G. McKinley, W. C. Carter, Y. Chiang, “Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks,” American Chemical Society Nano Letters, March 5, 2014, DOI: 10.1021/nl500740t. View

K. C. Lau, R. Assary, and L. A. Curtiss, “Aprotic Electrolytes in Li–Air Batteries,” Electrolytes for Lithium and Lithium-Ion Batteries, Modern Aspects of Electrochemistry, Vol. 58, March 2014, DOI: 10.1007/978-1-4939-0302-3_10. View

P. Abellan, B. L. Mehdi, L. R. Parent, M. Gu, C. Park, W. Xu, Y. Zhang, I. Arslan, J. Zhang, C. Wang, J. E. Evans, and N. D. Browning, “Probing the Degradation Mechanisms in Electrolyte Solutions for Li-Ion Batteries by In Situ Transmission Electron Microscopy,” American Chemical Society Nano Letters, February 21, 2014, DOI: 10.1021/nl404271k. View

U. Das, K. Lau, P. Redfern, L. A. Curtiss, “Structure and Stability of Lithium Superoxide Clusters and Relevance to Li-O2 Batteries,” The Journal of Physical Chemistry Letters, February 10, 2014, DOI: 10.1021/jz500084e. View

K. C. Smith, Y. Chiang and W. C. Carter, “Maximizing Energetic Efficiency in Flow Batteries Utilizing Non-Newtonian Fluids,” The Journal of the Electrochemical Society, January 24, 2014, DOI: 10.1149/2.011404jes. View

Latest Updates

See All
  • A Message from JCESR Director George Crabtree

    Despite the coronavirus challenges, JCESR continues to push the frontier of energy storage science as we telecommute from home, like much of the nation. We are turning our attention to computation, data analysis and paper writing which continues at a normal or higher pace, enabled … Read More

  • You’re invited: Idaho National Laboratory and JCESR webinar on energy storage (March 18 )

    Electrification is changing the energy landscape of the Mountain West region. While energy storage remains a key enabler to this transformation, infrastructure upgrade and supply chain development will be a key driver for this new economy. Join us on March 18 for a webinar where we’ll … Read More

  • Direct Nano-Synthesis Methods Notably Benefit Mg-Battery Cathode Performance

    A novel Mg cathode material – CuCo2S4 – was identified as a conversion material where direct nano-synthesis was required to provide the best electrochemical performance and deliver 350 mAh·g-1 at 60 °C, a capacity nearly double that of ball-milled material with similar dimensions. Read More

  • Quantifying Capacity Losses due to Solid Electrolyte Interphase Evolution

    We quantified the capacity loss originating in solid electrolyte interphase (SEI) growth during each cycle and extracted the proportionality constant for SEI growth following a parabolic growth law. This continuous SEI growth contributes to the increasing overpotential, leading to capacity fading at a given constant … Read More

  • On Lifetime and Cost of Redox-Active Organics for Aqueous Flow Batteries

    In this viewpoint, we recommend methodology for (1) testing aqueous organic flow batteries to better understand the fade mechanisms and failure modes, and for (2) techno-economic assessment of these batteries that incorporates the costs associated with electrolyte decay and replacement to articulate a feasible design … Read More