Melanie Sanford is an internationally renowned leader in the fields of catalysis, organic synthesis, and energy storage. She has won numerous awards, including the ACS Award in Pure Chemistry, a MacArthur Foundation Fellowship, and the Blavatnik Prize. Sanford is an elected member of the National Academy of Sciences and has made important contributions to the development and understanding of novel redox active organic and inorganic molecules for applications in redox flow batteries. Sanford is a Moses Gomberg Distinguished University Professor at the University of Michigan.
Latest Updates
See All-
JCESR Concludes Decade-Long Mission, Leaves Lasting Impact on Battery Science
The official end of the Joint Center for Energy Storage Research (JCESR) innovation hub occurred in June 2023 after more than a decade of research and development dedicated to one of humanity’s most pressing challenges: the development of a better battery to help usher in… Read More
-
You’re Invited - JCESR and Beyond: Translating the Basic Science of Batteries
Please join us at Argonne National Laboratory on Tuesday, April 4, 2023 for JCESR and Beyond: Translating the Basic Science of Batteries. Registration is now open. This in-person event will celebrate 10 years of research from the Joint Center… Read More
-
A Message from JCESR: In Memory of George Crabtree
It is with heavy hearts that we say goodbye to George Crabtree, a Senior Scientist and Distinguished Fellow at Argonne National Laboratory, and Director of the Joint Center for Energy Storage Research (JCESR), who passed away unexpectedly on January 23. Dr. Read More
-
Cyanopyridines As Extremely Low-Reduction-Potential Anolytes for Nonaqueous Redox Flow Batteries
Discovery of a cyanophenylpyridine derivative with a very low reduction potential and good stability during cycling. Read More
-
Characterizing Redoxmer – Electrode Kinetics Using a SECM-Based Spot Analysis Method
Identified asymmetries in electron transfer (ET) kinetics between the reduction and oxidation of ferrocene-based redoxmers by measuring the ET rate constants (kf/kb) as a function of electrode potential. Read More