JCESR’s focus has changed to building transformational materials from the bottom up, atom-by-atom and molecule-by-molecule, where each atom or molecule plays a prescribed role in producing the desired overall materials performance. We could not have done this 10 years ago when the advanced scientific tools we are now using did not yet exist. We are working to discover new material structures with behaviors that have never been seen before—that we will be able to model and produce with our bottom-up, atom-by-atom approach.
Latest Updates
See All-
Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes
In this work, we observe highly efficient intermolecular charge transport between stacked pyridinium dimers inside a synthetic host (cucurbit[8]uril, CB[8]) using single molecule techniques. Read More
-
George Crabtree wins 2022 Energy Systems Award
The prestigious award recognizes the importance of transforming energy systems from fossil fuels to carbon-free technologies. Physicist George Crabtree of the U.S. Department of Energy’s (DOE) Argonne National Laboratory has received the 2022 Energy Systems Award from the American Institute of Aeronautics and Astronautics ( … Read More
-
Exploring the Synthesis of Alkali Metal Anti-perovskites
This work combines Density functional theory, quasi-harmonic approximation and experiments to explore the synthesizability of several marginally stable antiperovskites (APs) and overall, has obtained good agreement between experiments and computation. Read More
-
Untapped Potential: The Need and Opportunity for High-Voltage Aqueous Redox Flow Batteries
Prior studies of the techno-economic design space for aqueous redox flow batteries (AqRFBs) have almost exclusively focused on cell potentials ≤1.5 V, due, at least in part, to the belief that battery operation at higher cell potentials in not feasible due to electrolyte decomposition. However, … Read More
-
Intercalation of Ca into a Highly Defective Manganese Oxide at Room Temperature
Nanocrystals of layered MnOx containing a high concentration of atomic defects and lattice water are shown to have remarkable electrochemical activity towards Ca2+ , amounting to a capacity of ~130 mAh/g at room temperature. Multimodal characterization revealed the notable degree of intercalation by probing the … Read More