JCESR has had a very successful first five years. The personal relationships we’ve formed now enable us to move forward with even more momentum. Recently, the team of more than 150 came together for its first full program meeting since renewal. As stated by the team, there is no replacement for direct human interaction. It is easy to get excited when you see the entire JCESR community working toward a common goal. The momentum created when we all come together will have a positive impact on the team for several months as we continue to work more closely together.
Latest Updates
See All-
Efficient Intermolecular Charge Transport in π-Stacked Pyridinium Dimers Using Cucurbit[8]uril Supramolecular Complexes
In this work, we observe highly efficient intermolecular charge transport between stacked pyridinium dimers inside a synthetic host (cucurbit[8]uril, CB[8]) using single molecule techniques. Read More
-
George Crabtree wins 2022 Energy Systems Award
The prestigious award recognizes the importance of transforming energy systems from fossil fuels to carbon-free technologies. Physicist George Crabtree of the U.S. Department of Energy’s (DOE) Argonne National Laboratory has received the 2022 Energy Systems Award from the American Institute of Aeronautics and Astronautics ( … Read More
-
Exploring the Synthesis of Alkali Metal Anti-perovskites
This work combines Density functional theory, quasi-harmonic approximation and experiments to explore the synthesizability of several marginally stable antiperovskites (APs) and overall, has obtained good agreement between experiments and computation. Read More
-
Untapped Potential: The Need and Opportunity for High-Voltage Aqueous Redox Flow Batteries
Prior studies of the techno-economic design space for aqueous redox flow batteries (AqRFBs) have almost exclusively focused on cell potentials ≤1.5 V, due, at least in part, to the belief that battery operation at higher cell potentials in not feasible due to electrolyte decomposition. However, … Read More
-
Intercalation of Ca into a Highly Defective Manganese Oxide at Room Temperature
Nanocrystals of layered MnOx containing a high concentration of atomic defects and lattice water are shown to have remarkable electrochemical activity towards Ca2+ , amounting to a capacity of ~130 mAh/g at room temperature. Multimodal characterization revealed the notable degree of intercalation by probing the … Read More