Addressing Passivation in Lithium-Sulfur Battery Under Lean Electrolyte Condition

An ammonium electrolyte additive, NH4TFSI, mitigates the uncontrollable accumulation of Li2S and extends the cycle life of Li-S batteries under lean electrolyte condition through promoting Li2S dissociation.

Scientific Achievement

Identification and understanding of cycle life limiting factors of Li-S batteries under lean electrolyte conditions; Identification of a NH4TFSI additive to effectively mitigate the uncontrollable passivation issue arising from accumulation of insulating Li2S.

Significance and Impact

NH4TFSI additive enhances the dissociation of Li2S, and largely reduces the insoluble and insulating Li2S particles in sulfur cathodes, which facilitates reversible and sustainable redox reactions and significantly improves the cycle life of a Li-S battery under lean electrolyte conditions.

 Research Details

  • The cycle life of Li-S batteries under lean electrolyte condition largely depends on the electrolyte to sulfur ratio (E/S). SEM, NMR and XPS measurements indicate that a low E/S ratio creates a critical passivation issue resulting from uncontrollable and irreversible accumulation of Li2S.
  • The NH4TFSI additive increases the solubility of Li2S and other short-chain species effectively by tailoring the ionic strength of the solution and promoting Li2S dissociation.

SEM and EIS measurement indicate that NH4TFSI  enables a homogeneous sulfur cathode and Li anode morphology with sustainable reaction interfaces upon cycling under lean electrolyte conditions.

DOI: 10.1002/adfm.201707234

Download this highlight

Latest Updates

See All
  • JCESR Spotlight: Bob Jin Kwon, A Postdoc with Passion and Perseverance

    Argonne recognizes Kwon’s contributions to battery science with the Postdoctoral Performance Award. Article authored by: Michael Matz, Argonne Associate Bob Jin Kwon likes a good challenge, particularly when it comes to developing completely new kinds of batteries. “Developing new battery technologies is very challenging,” said … Read More

  • JCESR Spotlight: Lily Robertson Recognized for Her Contributions to Battery Research

    Argonne’s Postdoctoral Performance Award recognizes scientific achievements, leadership, and collaboration. Article authored by: Michael Matz, Argonne Associate Since her early days growing up in the Pacific Northwest, Lily Robertson has always wanted to help make the world a better place. “For as … Read More

  • Understanding fluorine-free electrolytes via small-angle X-ray scattering

    We compare the solvation phenomenon of sodium tetraphenylborate (NaBPh4) salt dissolved in organic solvents of propylene carbonate (PC), 1,2-dimethoxyethane (DME), acetonitrile (ACN) and tetrahydrofuran (THF) by SAXS/WAXS measurement and MD simulation. Read More

  • Navigating the Minefield of Battery Literature

    This is an invited perspective aiming to help researchers new to the field of battery research to circumvent certain recurring misconceptions and inaccuracies in the current battery literature. It covers the electrolyte ideality and practical situation in batteries, the difficulty in accurately determining ion transference … Read More

  • Quantifying Lithium Ion Exchange in Solid Electrolyte Interphase (SEI) on Graphite Anode Surfaces

    By using Li isotopic labelling of SEIs and electrolytes followed by time-of-flight secondary-ion mass spectroscopy and solid-state NMR analyses, we found that the majority of Li+ “immobilized” in the chemical ingredients were exchanged after 1 SEI formation cycle. Ion exchange by diffusion based on concentration … Read More