The Electrolyte Genome Project

Traditional chemistry relies on intuition and experience to select a few materials that might work well for new electrolytes. The Electrolyte Genome streamlines this process by evaluating thousands of materials by simulation on the computer and choosing the most promising few for synthesis in the laboratory.

Download

Latest Updates

See All
  • Search for the Super Battery

    We live in an age when technological innovation seems to be limitlessly soaring. But for all the satisfying speed with which our gadgets have improved, many of them share a frustrating weakness: the batteries. Aired on February 1, 2017, this NOVA program entitled … Read More

  • Director's Message -- 2016

    It seems only yesterday we launched the Joint Center for Energy Storage Research (JCESR), but in reality, it was nearly four years ago. Our vision was bold: high-performance, low-cost electricity storage that would lead to widespread deployment of electric vehicles and transformation of the … Read More

  • Energy Storage Has the Potential to Change the Way We Live

    This CNBC Special Report discusses how the striking and swift evolution of cell phones from cumbersome bricks to sleek, powerful devices was possible because of the lithium-ion batteries used to charge them up. Next-gen batteries could bring the kind of change we’ve seen in telephones … Read More

  • Scientific Sprints: Speed Through Collaboration

    As an innovative twist on traditional project management, JCESR conducts “Sprints,” small teams of dedicated researchers formed to solve a select research challenge within 1-6 months. Using the Sprint approach, JCESR takes a single question from our catalog of prioritized scientific challenges and dedicates a … Read More

  • Energy Storage: George Crabtree

    George Crabtree, JCESR Director, discusses the importance of developing the next generation of batteries and how that could help transform transportation and the electricity grid. Read More