Sprints

  • Scientific Sprints: Speed Through Collaboration

    As an innovative twist on traditional project management, JCESR conducts “Sprints,” small teams of dedicated researchers formed to solve a select research challenge within 1-6 months. Using the Sprint approach, JCESR takes a single question from our catalog of prioritized scientific challenges and dedicates a small, multidisciplinary team of 5-15 members to answer it. Read More

  • JCESR Scientific Sprints - Speed through Collaboration

    JCESR supplements its traditional project management approach with scientific “Sprints.” Sprints take a single question from JCESR’s catalog of prioritized scientific challenges and dedicate a small, multidisciplinary team of 5-15 members to answer it, enabling us to move forward more rapidly in our research. Sprints empower early-career scientists to show their leadership qualities in the Sprints they lead. Once a Sprint is completed, the outcome is documented within JCESR and shared with the research community. The resulting new knowledge then informs and inspires subsequent research challenges. Read More

  • JCESR Scientific Sprints - Better Polymers for Better Batteries

    JCESR supplements its traditional project management approach with scientific “Sprints.” The sprint described in this video involved a multidisciplinary team from Argonne, the University of Illinois at Urbana-Champaign, Massachusetts Institute of Technology, and the University of Michigan. As they studied how polymers in solution can … Read More

  • Sprints Accelerate Research

    In October 2014, we introduced “Sprints” to accelerate research and meet our goal of developing two battery prototypes, one for transportation and the other for the grid. Each Sprint begins with the identification of a critical scientific question for prototype development that must be answered within a few month timeframe, and the formation of the right team of scientists and engineers to answer the question. This arrangement has resulted in increased interaction across organizations. Read More

  • Demonstration of Magnesium Intercalation into a High-Voltage Oxide Electrode

    First demonstration of reversible insertion of multivalent magnesium ions (Mg2+) into a spinel-type manganese oxide (Mn2O4), using multi-modal characterization Read More

Sidebar

Latest Updates

See All