Electrochemical Discovery Laboratory

The Electrochemical Discovery Laboratory (EDL)—a key JCESR discovery tool located at Argonne—synthesizes high-quality materials for testing in beyond-lithium-ion batteries and characterizes their properties with state-of-the-art analytical techniques.

These techniques include structural, compositional, and trace analysis probes with the goal of understanding, at atomic and molecular levels, the chemical transformations that occur during battery charging and discharging.

The EDL facility houses a collection of synthetic and electroanalytical laboratories that, together, create a signature research tool for JCESR researchers. With these labs, it is possible to synthesize liquid electrolytes with unparalleled control over water content and other impurities. Scientists also design and characterize solid materials used in electrochemical applications and measure their electrochemical performance. This is achieved through a combination of synthesis tools, structural probes, surface compositional analysis techniques, and trace liquid impurity analysis capabilities.

The integration of these labs provides the ability to synthesize model electrode surfaces that are fully characterized (chemically, structurally, and electronically), and then transfer these surfaces directly into ultrapure electrochemical environments without exposing the materials to the atmosphere – a truly unique capability of the EDL.

At the EDL, collaborators from Argonne and other JCESR institutions are able to make use of the unique synthesis and characterization capabilities that have been developed. These capabilities also serve as an ideal platform for collaborating with theoretical efforts, where precisely tailored experiments can provide unique inputs into computational models in order to better understand the electrochemical behavior of new battery systems.

The Electrochemical Discovery Laboratory

The Electrochemical Discovery Laboratory (EDL) — a key JCESR discovery tool located at Argonne — synthesizes high-quality materials for testing in beyond-lithium-ion batteries and characterizes their properties with state-of-the-art analytical techniques.

Download

Latest Updates

See All
  • Search for the Super Battery

    We live in an age when technological innovation seems to be limitlessly soaring. But for all the satisfying speed with which our gadgets have improved, many of them share a frustrating weakness: the batteries. Aired on February 1, 2017, this NOVA program entitled … Read More

  • Director's Message -- 2016

    It seems only yesterday we launched the Joint Center for Energy Storage Research (JCESR), but in reality, it was nearly four years ago. Our vision was bold: high-performance, low-cost electricity storage that would lead to widespread deployment of electric vehicles and transformation of the … Read More

  • Energy Storage Has the Potential to Change the Way We Live

    This CNBC Special Report discusses how the striking and swift evolution of cell phones from cumbersome bricks to sleek, powerful devices was possible because of the lithium-ion batteries used to charge them up. Next-gen batteries could bring the kind of change we’ve seen in telephones … Read More

  • Scientific Sprints: Speed Through Collaboration

    As an innovative twist on traditional project management, JCESR conducts “Sprints,” small teams of dedicated researchers formed to solve a select research challenge within 1-6 months. Using the Sprint approach, JCESR takes a single question from our catalog of prioritized scientific challenges and dedicates a … Read More

  • Energy Storage: George Crabtree

    George Crabtree, JCESR Director, discusses the importance of developing the next generation of batteries and how that could help transform transportation and the electricity grid. Read More