Lithium Self-Discharge and its Prevention: Direct Visualization through In-Situ Electrochemical STEM

Scientific Achievement

We show that Li anode morphology and solid electrolyte interphase structure is dependent on surface compression, which affects the amount of self-discharge for an exciting solvent-in-salt electrolyte. Additionally, we show that coatings can suppress self-discharge.

Significance

In engineering batteries that contain a Li-metal anode for certain electrolytes, we show that cell compression and coatings will greatly impact the cell stability and performance.

Research Details

  • Sandia-microfabricated electrochemical TEM discovery platform, identified key factors in controlling SEI character and Li-metal morphology.
  • Li self-discharge was improved with cell compression and could be further improved with the use of a protective coating on the current collector, which also showed improved Li nucleation density.
  • In-situ TEM cells are not compressed, so experiments must be carefully designed to ensure relevance.

DOI: 10.1021/acsnano.7b05513

Read this highlight

Latest Updates

See All
  • Technology

    JCESR’s focus has changed to building transformational materials from the bottom up, atom-by-atom and molecule-by-molecule, where each atom or molecule plays a prescribed role in producing the desired overall materials performance. We could not have done this 10 years ago when the advanced scientific tools … Read More

  • Team Approach

    JCESR is a collaborative team of engineers and scientists with very broad backgrounds. In the battery space we are now facing challenges that required a multidisciplinary approach that no single group can achieve. Made up of 18 partner institutions, JCESR’s diversity and the opportunity for … Read More

  • Renewed Focus

    JCESR has had a very successful first five years. The personal relationships we’ve formed now enable us to move forward with even more momentum. Recently, the team of more than 150 came together for its first full program meeting since renewal. As stated by the … Read More

  • Simulation and Measurement of Water-induced Liquid-liquid Phase Separation of Imidazolium Ionic Liquid Mixtures

    Computationally predicted liquid-liquid phase equilibrium confirmed by experimental measurements. Read More

  • Unified Platform for Ion Transport in Inorganic Glasses, Polymers and Composite Solid Electrolytes

    In this review paper, ion transport parameters in seemingly different solid electrolytes – glasses, polymers, and composites - were presented on a unified platform. Read More